Skip to main content
Log in

Oxidation Behavior of ODS Fe–Cr–Al Alloys: Aluminum Depletion and Lifetime

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation kinetics of two ODS Fe–Cr–Al alloys, PM 2000 and MA 956, were studied in oxygen and in air under isothermal conditions from 1000 to 1300°C. They both form an α-alumina scale and have good oxidation resistance, without any mass loss. Although the aluminum content in these alloys is higher than the minimum Al content necessary to ensure the growth of a continuous alumina scale, an aluminum depletion occurred in the substrate. This depletion allows the determination of aluminum diffusion coefficients in the ODS alloy. This method is very original and interesting as no Al-stable isotope is available. Moreover, the evolution of the aluminum concentration in the substrate allows one to determine the lifetime of these alloys: indeed, when the aluminum content decreases and becomes lower than a critical value, alumina can no longer form, and less-stable oxides grow very rapidly compared to alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Messaoudi, Doctor thesis, University Paris XI, Orsay, F (1997).

  2. K. Messaoudi, A. M. Huntz, and B. Lesage, Mat. Sci. Eng. A247, 248(1998).

    Google Scholar 

  3. F. H. Stott, Materials Science Forum 251–254, 19(1997).

    Google Scholar 

  4. P. Lours, J. Alexis, and G. Bernhart, J. Mat. Sci. Lett. 17, 1089(1998).

    Google Scholar 

  5. G. Merceron, Doctor Thesis, ENSMP, Paris, F (2000).

  6. A. Czyrska-Filemonowicz, Mater. and Corros. 51, 350(2000).

    Google Scholar 

  7. H. Nickel, and W. J. Quadakkers, Heat Resistant Materials, Fontana, 87(1991).

  8. G. Merceron, R. Molins, and J. L. Strudel, Mater. at High Temp. 17 (1), 149(2000).

    Google Scholar 

  9. G. Merceron, R. Molins, and J. L. Strudel, Mater. Sci. Forum 369–372, 269(2001).

    Google Scholar 

  10. W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion 45, 232(1994).

    Google Scholar 

  11. M. Le Gall, B. Lesage, and J. Bernardini, Phil. Mag. A 70, 761(1994).

    Google Scholar 

  12. Z. Liu, W. Gao, and Y. He, Oxid. Met. 53, 3/4, 341(2000).

    Google Scholar 

  13. H. J. Grabke, European Federation of Corrosion Publications, ed, Institute of Materials 14, 54(1995).

    Google Scholar 

  14. L. Maréchal, Doctor thesis, University Paris XI, Orsay, F (2002).

  15. S. Weinbruch, A. Anastassiadis, H. M. Martinz, and P. Wilhartitz, Oxid. Met. 51, 1/2, 111(1999).

    Google Scholar 

  16. B. Lesage, L. Maréchal, A. M. Huntz, and R. Molins, Defect and Diffusion Forum 194–199, 1707(2001).

    Google Scholar 

  17. I. A. Akimova, V. M. Mironov, and A. V. Pokoyev, Phys. Met. Metallogr. 56/6, 175(1983).

    Google Scholar 

  18. K. M. N. Prasanna, A. S. Khanna, Ramesh Chandra, and W. J. Quadakkers, Oxid. Met. 46, 5/6, 465(1996).

    Google Scholar 

  19. B. Lesage, M. Le Gall, M. K. Loudjani, and A. M. Huntz, Defect and Diffusion Forum 95–98, 1061(1993).

    Google Scholar 

  20. E. G. Moya, F. Moya, B. Lesage, M. K. Loudjani, and C. Grattepain, J. Eur. Ceram. Soc. 5, 591(1998).

    Google Scholar 

  21. M. K. Loudjani, Doctor thesis, University Paris XI, Orsay, F (1992).

  22. M. K. Loudjani, J. Roy, A. M. Huntz, and R. Cortes, J. Am. Cer. Soc. 68, 559(1985).

    Google Scholar 

  23. A. Czyrska-Filemonowicz, R. A. Versaci, D. Clemens, and W. J. Quadakkers, Microscopy of Oxidation 2 The Institute of Materials, ed. S. B. Newcomb and M. J. Bennett, 288(1993).

  24. W. J. Quadakkers, D. Naumenko, L. Singheiser, H. J. Penkalla, and A. K. Tyagi, Mater. and Corros. 51, 350(2000).

    Google Scholar 

  25. A. M. Huntz, in “Difusao em Materiais”, ed. J. Philibert, A. C. S. Sabioni, and F. Dyment, REM, 315(1996)A. M. Huntz, Journal de Physique III, France 5, 1729 dy1995.

  26. A. Pint, Oxid. Met. 45, 1(1996).

    Google Scholar 

  27. R. Prescott and M. J. Graham, Oxid. Met. 38, 3/4, 233(1992).

    Google Scholar 

  28. D. Prot, M. Miloche, and C. Monty, J. Phys. Paris, 51, C1-1027 (1990)D. Prot, M. Miloche, and C. Monty, Mater. Sci. Forum 126–128, 403(1993).

  29. D. Prot, M. Le Gall, B. Lesage, A. M. Huntz, and C. Monty, Phil. Mag. A 73, 935(1996).

    Google Scholar 

  30. C. Wagner, J. Electrochem. Soc. 99, 10(1952).

    Google Scholar 

  31. A. Heesemann, E. Schmidtke, F. Faupel, and A. Kolbs-Telieps, J. Klöwer, Scripta Mat. 40, 5(1999).

    Google Scholar 

  32. P. Moulin, A. M. Huntz, and P. Lacombe, Acta Met. 28, 745(1980) traduced by D.C. Harris, Defense Research Information Center, May 1982 DRIC T 6609.-

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maréchal, L., Lesage, B., Huntz, A.M. et al. Oxidation Behavior of ODS Fe–Cr–Al Alloys: Aluminum Depletion and Lifetime. Oxidation of Metals 60, 1–28 (2003). https://doi.org/10.1023/A:1024604428747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024604428747

Navigation