Skip to main content
Log in

A new algebraic approach to the Szegő-Widom limit theorem

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We give another proof of the Szeg\H{o}–Widom Limit Theorem. This proof relies on a new Banach algebra method that can be directly applied to the asymptotic computation of the Toeplitz determinants. As a by-product, we establish an interesting identity for operator determinants of Toeplitz operators, namely if \(a_1 ,...,a_R\) are certain matrix valued functions defined on the unit circle, then

$$\det \left( {e^{T\left( {a_1 } \right)} ...e^{T\left( {a_R } \right)} T\left( {e^{ - a_R } ...e^{ - a_1 } } \right)} \right) = \det \left( {T\left( {e^{\tilde a_1 } ...e^{\tilde a_{_R } } e^{T\left( {\tilde a_R } \right)} ...e^{T\left( {\tilde a_1 } \right)} } \right)} \right)$$
$$where\tilde a_r \left( {e^{i{\theta }}} \right) = a_r \left({e^ - i{\theta }} \right)$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Arens, To what extent does the space of maximal ideals determine the algebras?, in: Function algebras, Scott-Foresman (Chicago, Ill., 1966), pp. 164-168.

    Google Scholar 

  2. E. L. Basor, A localization theorem for Toeplitz determinants, Indiana Univ. Math. J., 28 (1979), 975-983.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. L. Basor, Distribution functions for random variables for ensembles of positive Hermitian matrices, Comm. Math. Phys., 188 (1997), 327-350.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. L. Basor and T. Ehrhardt, Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices, Math. Nachr., 228 (2001), 5-45.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. L. Basor and T. Ehrhardt, Asymptotics of determinants of Bessel operators, to appear in Comm. Math. Physics.

  6. A. Böttcher and B. Silbermann, Invertibility and Asymptotics of Toeplitz Matrices, Akademie Verlag (Berlin, 1983).

    Google Scholar 

  7. A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer Verlag (Berlin, 1990).

    Google Scholar 

  8. A. Böttcher and B. Silbermann, Infinite Toeplitz and Hankel matrices with operator-valued entries, SIAM J. Math. Anal., 27 (1996), 805-822.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Böttcher, B. Silbermann, and H. Widom, A continuous analogue of the Fisher-Hartwig formula for piecewise continuous symbols, J. Funct. Anal., 122 (1994), 222-246.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Ehrhardt, A status report on the asymptotic behavior of Toeplitz determinants with Fisher-Hartwig singularities, in: Operator Theory: Advances and Applications, 124, Birkhäuser (Basel, 2001), pp. 217-241.

    Google Scholar 

  11. T. Ehrhardt, S. Roch, and B. Silbermann, Finite section method for singular integrals with operator-valued PQC-coefficients, in: Operator Theory: Advances and Applications, 90, Birkhäuser (Basel, 1996), pp. 204-243.

    Google Scholar 

  12. I. A. Feldman and A. S. Markus, The index of an operator matrix, Funkts. Anal. Prilozh., 11 (1977), no. 2, 83-84 (in Russian), also in: Funct. Anal. Appl., 11 (1977), 149–151.

    MATH  MathSciNet  Google Scholar 

  13. I. Gelfand, D. Raikov, and G. Shilov, Commutative Normed Rings, Chelsea Publ. Co. (New York, 1964).

    Google Scholar 

  14. I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, American Math. Soc. (Providence, R.I., 1969).

    Google Scholar 

  15. R. Hagen, S. Roch, and B. Silbermann, C*-algebras and numerical analysis, Marcel Dekker, Inc. (New York, 2001).

    Google Scholar 

  16. V. V. Peller, Hankel operators of the class Cp and their applications, Mat. Sb., 113:4 (1980), 538-581 (in Russian), also in: Math. USSR Sbornik, 21 (1982), 443–479.

    MATH  MathSciNet  Google Scholar 

  17. W. Rudin, Functional Analysis, McGraw-Hill, Inc. (New York, 1991).

    Google Scholar 

  18. G. Szegő, On certain Hermitian forms associated with the Fourier series of a positive function, Comm. Sém. Math. Univ. Lund, Suppl. 1952 (1952), 228-238.

    Google Scholar 

  19. J. L. Taylor, Banach algebras and topology, in: Algebras in Analysis, Academic Press (London, 1975), pp. 118-186.

    Google Scholar 

  20. H. Widom, Asymptotic behavior of block Toeplitz matrices and determinants. II, Adv. Math., 21 (1976), 1-29.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, T. A new algebraic approach to the Szegő-Widom limit theorem. Acta Mathematica Hungarica 99, 233–262 (2003). https://doi.org/10.1023/A:1024575327363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024575327363

Navigation