Skip to main content
Log in

Micro/nanomachining of Polymer Surface for Promoting Osteoblast Cell Adhesion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Interactions between cells and biomaterials are affected by surface properties. Therefore, various approaches have been introduced for surface modifications. Here a technique based on ion beam lithography to improve osteoblast cell adhesion on polymeric materials is reported. We have demonstrated that exposing the polymer to P+ or Ar+ ions through masks can generate micro/nano-scale patterns. Our results illustrate that after exposure to an ion beam, the amount of osteoblast cells attached to the polymer was enhanced as a consequence of the roughened surface as well as due to the implanted ions. This indicates that masked ion beam lithography (MIBL) can not only generate nanostructures on the surface of a biocompatible polymer, but can also selectively modify the surface chemistry by implanting with specific ions. These factors can contribute to an osteogenic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.M. Agrawal, JOM 50(1), 31-35 (1998).

    Google Scholar 

  • L. Bacakova, V. Svorcik, V. Rybka, I. Micek, V. Hnatowicz, V. Lisa, and F. Kocourek, Biomaterials 17(11), 1121-1126 (1996).

    Google Scholar 

  • V. Bianchi, R. Dal Toso, P. Debetto, and A.G. Levis, Toxicology 17(2), 219-224 (1980).

    Google Scholar 

  • M. Bosetti, A. Massè, E. Tobin, and M. Cannas, J. Mater. Sci.: Mater. Med. 12(5), 431-435 (2001).

    Google Scholar 

  • B.D. Boyan, T.W. Hummert, D.D. Dean, and Z. Schwartz, Biomaterials 17, 137-146 (1996).

    Google Scholar 

  • D. Buser, R.K. Schenk, S. Steinemann, J.P. Fiorellini, C.H. Fox, and H. Stich, J. Biomed. Mater. Res. 25(7), 889-902 (1991).

    Google Scholar 

  • B. Chehroudi, T.R. Gould, and D.M. Brunette, J. Biomed. Mater. Res. 23(9), 1067-1085 (1989).

    Google Scholar 

  • P.K. Chu, J.Y. Chen, L.P. Wang, and N. Huang, Mater. Sci. Eng. R 36(5–6), 143-206 (2002).

    Google Scholar 

  • B.A. Dalton, M. Dziegielewski, G. Johnson, P.A. Underwood, and J.G. Steele, BioTechniques 21, 298-303 (1996).

    Google Scholar 

  • D.A. Dwayne and M.L. McCain, J. Biomed. Mater. Res. 53, 536-546 (2000).

    Google Scholar 

  • C.H. Han, C.B. Johansson, A. Wennerberg, and T. Albrektsson, Clin. Oral Implants Res. 9(1), 1-10 (1998).

    Google Scholar 

  • T. Hanawa, Mater. Sci. Eng. A 267, 260-266 (1999).

    Google Scholar 

  • T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, K. Murakami, and K. Asaoka, J. Biomed. Mater. Res. 36(1), 131-136 (1997).

    Google Scholar 

  • T. Hanawa and M. Ota, Biomaterials 12(8), 767-774 (1991).

    Google Scholar 

  • T. Hanawa and M. Ota, Appl. Surf. Sci. 55(4), 269-276 (1992).

    Google Scholar 

  • T. Hanawa, H. Ukai, and K. Murakami, J. Electron Spectrosc. Relat. Phenom. 63(4), 347-354 (1993).

    Google Scholar 

  • W. He, D.B. Poker, K.E. Gonsalves, and N. Batina, Microelectronic Eng. 65(1–2), 153-161 (2002).

    Google Scholar 

  • J.C. Heath and M. Webb, Br. J. Cancer 21(4), 768-779 (1967).

    Google Scholar 

  • D. Krupa, J. Baszkiewicz, J.A. Kozubowski, A. Barcz, J.W. Sobczak, A. Biliński, M. Lewandowska-Szumie, and B. Rajchel, Biomaterials 23, 3329-3340 (2002).

    Google Scholar 

  • M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, and M.F. Sigot-Luizard, J. Biomed. Mater. Res. 36(1), 99-108 (1997).

    Google Scholar 

  • C.T. Laurencin, A.M.A. Ambrosio, M.D. Borden, and J.A. Cooper, Jr. Annu. Rev. Biomed. Eng. 1, 19-46 (1999).

    Google Scholar 

  • T.Q. Lee, M.I. Danto, and W.C. Kim, Orthopedics 21(8), 885-888 (1998).

    Google Scholar 

  • J.E. Lemons, Surf. Coat. Technol. 103–104, 135-137 (1998).

    Google Scholar 

  • J.B. Lhoest, J.L. Dewez, and P. Bertrand, Nucl. Instr. Meth. B 105, 322-327 (1995).

    Google Scholar 

  • D.J. Li, F.Z. Cui, and H.Q. Gu, Nucl. Instr. Meth. B 152, 80-88 (1999).

    Google Scholar 

  • C. Maniatopoulos, R.M. Pilliar, and D.C. Smith, J. Biomed. Mater. Res. 20(9), 1309-1333 (1986).

    Google Scholar 

  • K. Murakami and K. Asaoka, J. Biomed. Mater. Res. 36(1), 131-136 (1997).

    Google Scholar 

  • Y. Nishi and R. Doering, Handbook of Semiconductor Manufacturing Technology (Marcel Dekker, New York, 2000).

    Google Scholar 

  • B. Pignataro, E. Conte, A. Scandurra, and G. Marletta, Biomaterials 18, 1461-1470 (1997).

    Google Scholar 

  • W.K. Ramp, R.M. Dillaman, L.G. Lenz, D.M. Gay, R.D. Roer, and T.A. Ballard, Bone Miner. 15, 1-17 (1991).

    Google Scholar 

  • W.K. Ramp, L.G. Lenz, and K.K. Kaysinger, Bone Miner. 24, 59-73 (1994).

    Google Scholar 

  • A. Rich and A.K. Harris, J. Cell Sci. 50, 1-7 (1981).

    Google Scholar 

  • V.I. Sikavitsas, J.S. Temenoff, and A.G. Mikos, Biomaterials 22, 2581-2593 (2001).

    Google Scholar 

  • J.E. Sundgren, P. Bodö, B. Ivarssonand, and I. Lundström, J. Colloid Interface Sci. 113(2), 530-543 (1986).

    Google Scholar 

  • Y. Suzuki, M. Kusakabe, J.S. Lee, M. Kaibara, M. Iwaki, and H. Sasabe, Nucl. Instr. Meth. B 65, 142-147 (1992).

    Google Scholar 

  • V. Švorčík, K. Walachová, K. Prošková, B. Dvořánková, D. Vogtová, R. Öchsner, and H. Ryssel, J. Mater. Sci.: Mater. Med. 11, 655-660 (2000).

    Google Scholar 

  • K.A. Thomas and S.D. Cook, J. Biomed. Mater. Res. 19(8), 875-901 (1985).

    Google Scholar 

  • H.H. Trieu, J.R. Justis, T.D. Drewry, M.C. Sherman, B.J. Coates, and B.T. Estes, PCT Int. Appl. 2000.

  • T.J. Webster, R.W. Siegel, and R. Bizios, Scripta Mater. 44(8/9), 1639-1642 (2001).

    Google Scholar 

  • A. Wennerberg, T. Albrektsson, and J. Lausmaa, J. Biomed. Mater. Res. 30(2), 251-260 (1996).

    Google Scholar 

  • J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Gonsalves, K.E., Batina, N. et al. Micro/nanomachining of Polymer Surface for Promoting Osteoblast Cell Adhesion. Biomedical Microdevices 5, 101–108 (2003). https://doi.org/10.1023/A:1024531010086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024531010086

Navigation