Skip to main content
Log in

Extracellular Glucose Oxidase of Penicillium funiculosum 46.1

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1 using ultrafiltration membranes was developed. Two samples of the enzyme with a specific activity of 914–956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16°C was 2.74 × 10–6 s–1. This constant decreased significantly as the pH of the medium increased (4.0–10.0). The temperature optimum for glucose oxidase–catalyzed β-D-glucose oxidation was in the range 30–65°C. At temperatures below 30°C, the activation energy for β-D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase–catalyzed β-D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dziezak, J.D., Food Technol, 1986, vol. 40, pp. 94–103.

    Google Scholar 

  2. Tiina, M. and Sandholm, M., Int. J. Food Microbiol., 1989, vol. 8, pp. 165–174.

    Google Scholar 

  3. Alberti, B.A. and Klibanov, A.M., Enzyme Microbiol. Technol., 1982, vol. 4, no.1, pp. 47–49.

    Google Scholar 

  4. Kawakami, K., Nagamatsu, S., Ishii, M., and Kusonoki, K., Biotechnol. Bioeng., 1986, vol. 28, no.7, pp. 1007–1013.

    Google Scholar 

  5. Rohr, M., Kubicek, C.P., and Kominek, J., Biotechnology, Rehm, H.S. and Reed, G., Eds., Wenheim: Verlag Chemie, 1983, vol. 3, pp. 455–465.

    Google Scholar 

  6. Gorodetskii, V.K., Belki v meditsine i narodnom khozyaistve (Proteins in Medicine and National Economy), Kiev: Nauk.dumka, 1965, pp. 195–203.

    Google Scholar 

  7. Wilson, R. and Turner, A.P.F., Biosens. Bioelectronics, 1992, vol. 7, no.2, pp. 165–187.

    Google Scholar 

  8. Crueger, A. and Crueger, W., Microbial Enzymes and Bio/Technology, Fogarty, W.M. and Kelly, C.T., Eds., London, New York: Elsevier Appl. Sci., 1990, pp. 177–226.

    Google Scholar 

  9. Gulyi, M.F., Bilai, V.I., Pidoplichko, N.M., et al., Ferment glyukozooksidaza i ego primenenie (Glucose Oxidase and Its Application), Kiev: Naukova Dumka, 1964.

    Google Scholar 

  10. Semashko, T.V., Mikhailova, R.V., Lobanok, A.G., et al., Mikrobiologiya, 2000, vol. 69, no.4, pp. 494–498.

    Google Scholar 

  11. Mikhailova, R.V., Semashko, T.V., and Lobanok, A.G., Prikl. Biokhim. Mikrobiol., 2002, vol. 38, no.3, pp. 273–277.

    Google Scholar 

  12. Bradford, M.M., Anal. Biochem., 1976, vol. 72, no.1–2, pp. 248–254.

    Google Scholar 

  13. Kalb, V.F. Jr. and Bernlohr, R.W., Anal. Biochem., 1977, vol. 82, no.2, pp. 362–371.

    Google Scholar 

  14. Metody eksperimental'noi mikologii (Methods for Experimental Mycology), Bilai, V.I., Ed., Kiev, 1973, pp. 100–102.

  15. Cuicu, A. and Patroescu, C., Anal. Lett., 1984, vol. 17, no.B12, pp. 1417–1427.

    Google Scholar 

  16. Markwell, J., Frakes, L.-J., Brott, E.C., et al., Appl. Microbiol. Biotechnol., 1989, vol. 30, no.2, pp. 166–169.

    Google Scholar 

  17. Yoshimura, T. and Isemura, T., J. Biochem. (Tokyo), 1971, vol. 69, no.5, pp. 839–846.

    Google Scholar 

  18. Shishko, Zh.F., Mikhailova, R.V., Yasenko, M.I., et al., Dokl. NAN Belarusi, 2001, vol. 45, no.3, pp. 78–81.

    Google Scholar 

  19. Shishko, Zh.F., Mikhailova, R.V., Eremin, A.N., et al., Izv. NAN Belarusi, Ser. Biol. Nauk, 2001, no. 3, pp. 52–56.

    Google Scholar 

  20. Nakamura, S. and Fujiki, S., J. Biochem., 1968, vol. 63, no.1, pp. 51–58.

    Google Scholar 

  21. Witt, S., Singh, M., and Kalisz, H.M., Appl. Environ. Microbiol., 1998, vol. 64, no.4, pp. 1405–1411.

    Google Scholar 

  22. Hecht, H.J., Kalisz, H.M., Hendle, J., Schmid, R.D., and Schomburg, D., J. Mol. Biol., 1993, vol. 229, no.1, pp. 153–172.

    Google Scholar 

  23. Degtyar', R.G. and Gulyi, M.F., Ukr. biokhim. zhu, 1979, vol. 51, no.4, pp. 363–368.

  24. Degtyar', R.G. and Gulyi, M.F., Ukr. biokhim. zh, 1981, vol. 53, no.4, pp. 42–47.

  25. Nakamura, S. and Fujiki, S., J. Biochem. (Tokyo), 1963, vol. 63, no.1, pp. 51–58.

    Google Scholar 

  26. Garzillo, A.M.V., Di Paolo, S., Fenice, M., et al., Biotechnol. Appl. Biochem., 1995, vol. 22, no.2, pp. 169–178.

    Google Scholar 

  27. Kleppe, K., Biochem. J., 1966, vol. 5, no.1, pp. 139–143.

    Google Scholar 

  28. Kalisz, H.M., Hendle, J., and Schmid, R.D., Appl. Microbiol. Biotechnol., 1997, vol. 47, pp. 502–507.

    Google Scholar 

  29. Rando, D., Kohring, G.-W., and Goffhorn, F., Appl. Microbiol. Biotechnol., 1997, vol. 48, pp. 34–40.

    Google Scholar 

  30. Ye, W.-N. and Combes, D., Biochim. Biophys. Acta, 1989, vol. 999, no.1, pp. 86–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semashko, T.V., Mikhailova, R.V. & Eremin, A.N. Extracellular Glucose Oxidase of Penicillium funiculosum 46.1. Applied Biochemistry and Microbiology 39, 368–374 (2003). https://doi.org/10.1023/A:1024512316571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024512316571

Keywords

Navigation