Skip to main content
Log in

Synthesis and Study of Isomorphous Miscibility Limits of Crystalline Phases with a Hollandite-Type Tunnel Structure in the Cs2O(MeO)–Al2O3–TiO2 (Me = Ba, Sr) Systems*

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The possibility of forming hollandite-type phases during the solid-phase reaction in the Cs2O(MeO)–Al2O3–TiO2 (Me = Ba, Sr) systems is studied. It is revealed that, in the Cs2O–BaO–Al2O3–TiO2 system, the region of existence of Cs x Ba1 – x/2Al2Ti5O14 solid solutions with a hollandite-type structure lies in the concentration range 0 ≤ x ≤ 0.7. In the SrO–BaO–Al2O3–TiO2 system, no solid solutions with a hollandite-type structure are observed. The mechanism and kinetics of formation of the Cs x Ba1 – x/2Al2Ti5O14 (0 ≤ x ≤ 0.7) solid solutions are analyzed, and the optimum conditions for synthesis of these solutions are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sabine, T.M. and Hewat, A.W., The Structure of Hollandite-Type Phase of SYNROC-B in the Temperature Range 20–1060°C, J. Nucl. Mater., 1982, vol. 110, no. 2, pp. 173–177.

    Google Scholar 

  2. Ringwood, A.E., Kesson, S.E., War, N.G., et al., The SYNROC Process: A Geological Approach to Nuclear Waste Immobilization, Geochem. J., 1979, vol. 13, no. 4, pp. 141–165.

    Google Scholar 

  3. Shabalin, B.G. and Pol'shin, E.V., Synthesis of Hollandites and Their Isomorphism, Miner. Zh., 2001, vol. 23, no. 1, pp. 63–68.

    Google Scholar 

  4. Bursill, L.A., Some Consequence of the Radiation-Induced Transformations of 137Cs in Synthetic Hollandite-Type Phases, J. Solid State Chem., 1987, vol. 69, no. 2, pp. 355–359.

    Google Scholar 

  5. Bursill, L.A. and Smith, D.J., Electron Irradiation Effects in (Cs, Ba)-Hollandites, J. Solid State Chem., 1987, vol. 69, no. 2, pp. 343–354.

    Google Scholar 

  6. Cheary, R.W. and Kwiatkowska, J., An X-ray Analysis of Cesium Substitution in the Barium Hollandite Phase of SYNROC, J. Nucl. Mater., 1984, vol. 125, no. 2, pp.–236–243.

    Google Scholar 

  7. Solomah, A.G. and Reinhard, O., Identification of BaO-Al2O3–5TiO2 in the Ternary System BaO-Al2O3-TiO2, Commun. Am. Ceram. Soc., 1983, no. 10, pp. 182–183.

  8. Byström, A. and Byström, A.M., The Crystal Structures of Hollandite, the Related Manganese Oxide Minerals and γ-MnO2, Acta Crystallogr., 1950, vol. 3, part 2, pp.–146–154.

    Google Scholar 

  9. Cadee, M.C. and Prodan, A., Tripling of the Short Axis in the Hollandite Structure, Mater. Res. Bull., 1987, vol. 14, no. 5, pp. 613–618.

    Google Scholar 

  10. Fanchon, E., Vicat, J., Louis, J., et al., Commensurate Ordering and Domains in the a1.2Ti6.8Mg1.2O16 Hollandite, Acta Crystallogr., Sect. B: Struct. Sci., 1987, vol. 43, part 5, pp. 440–448.

    Google Scholar 

  11. Rukovodstvo po rentgenovskomu issledovaniyu mineralov (A Guide for X-ray Analysis of Minerals), Frank-Kamenetsky, V.A., Ed., Leningrad: Nedra, 1975.

  12. Voskresenskii, P.I., Tekhnika laboratornykh rabot (A Guide for Laboratory Studies), Moscow: Goskhimizdat, 1962.

    Google Scholar 

  13. Kesson, E.S. and White, T.Y., [Ba x Cs y ][Ti,A1) 3+2x+y Ti4+]8-2x-yO16 SYNROC-Type Hollandite: II. Structural Chemistry, Proc. R. Soc. London, Ser. A, 1986, vol. 408, no. 1835, pp. 295–319.

    Google Scholar 

  14. Kesson, E.S. and White, T.Y., Radius Ratio Tolerance and the Stability of Hollandites, J. Solid State Chem., 1986, vol. 63, no. 1, pp. 122–125.

    Google Scholar 

  15. Kinomura, N., Synthesis of the Gallium and Silver Aluminogermanate with the Hollandite-Type Structure, J. Am. Ceram. Soc., 1973, vol. 56, no. 6, pp. 344–345.

    Google Scholar 

  16. Petrov, S.A., Grigor'eva, L.F., Sazeev, M.Yu., and Filatov, S.K., Some Crystal Chemical Features of Hollandite-Type Phases Crystallizing in the Systems K2O-MO(M '2 O3)-TiO2 (M = Mg, Zn; M' = Ga) and M '2 O-MgO-TiO2 (M' = Li, K, Rb, Cs), Neorg. Mater., 1994, vol. 30, no. 7, pp. 963–966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, S.A., Grigor'eva, L.F., Sinel'shchikova, O.Y. et al. Synthesis and Study of Isomorphous Miscibility Limits of Crystalline Phases with a Hollandite-Type Tunnel Structure in the Cs2O(MeO)–Al2O3–TiO2 (Me = Ba, Sr) Systems*. Glass Physics and Chemistry 29, 316–321 (2003). https://doi.org/10.1023/A:1024498418871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024498418871

Keywords

Navigation