Skip to main content
Log in

Structure and vibrational spectra of dicyclopentadienylzinc. A DFT study

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The quantum-chemical DFT calculations of the Cp2Zn structure confirm the conclusion made earlier from the vibrational spectra that the sandwich structure (η5-C5H5)2Zn (A) is not energetically favorable and more favorable are the close in energy πσ-structure (η5-C5H5)(η1-C5H5)Zn (B) and σ-structure (η1-C5H5)2Zn (C). The vibrational spectra of structures B and C with the DFT-derived force fields were calculated. A comparison of the calculated spectra of the isolated Cp2Zn molecules with the experimental data gives no way of deciding between the B and C structures. It is most likely that the molecule is nonrigid and experiences a strong influence from the nearest environment in solution or in the crystalline state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. T. Aleksanyan and B. V. Lokshin, Kolebatel´nye spektry π-kompleksov perekhodnykh elementov, Itogi nauki i tekhniki, Stroenie molekul i khimicheskaya svyaz´ [Vibrational Spectra of π-Complexes of Transition Elements, Results of Science and Technology, Structure of Molecules and Chemical Bond], VINITI, Moscow, 1976, 5, 178 pp. (in Russian).

    Google Scholar 

  2. V. T. Aleksanyan, in Vibrational Spectra and Structure, A Series of Advances, Ed. J. R. Durig, Elsevier, Amsterdam, 1982, 11, 107.

    Google Scholar 

  3. К. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.

    Google Scholar 

  4. E. Maslovsky, Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, 528 pp.

    Google Scholar 

  5. H. P. Fritz, Adv. Organomet. Chem., 1964, 1, 239.

    Google Scholar 

  6. E. O. Fischer, H. P. Hoffmann, and A. Treiber, Z. Naturforsch., 1969, 14, 599.

    Google Scholar 

  7. J. Lorberth, J. Organomet. Chem., 1969, 19, 189.

    Google Scholar 

  8. J. M. Burlith, in Comprehensive Organometallic Chemistry, Ed. G. Wilkinson, Pergamon, Oxford, 1982, 6, 1002.

    Google Scholar 

  9. P. H. M. Budzelaar, J. Boersma, and G. J. M. van der Kerk, J. Organomet. Chem., 1985, 281, 123.

    Google Scholar 

  10. A. Haaland, S. Samdal, and R. Seip, J. Organomet. Chem., 1978, 153, 187.

    Google Scholar 

  11. Т. Aoyagi, H. M. M. Shearer, К. Wade, and G. Whitehead, J. Organomet. Chem., 1978, 146, C29.

    Google Scholar 

  12. O. G. Garkusha, B. V. Lokshin, and G. K. Borisov, J. Organomet. Chem., 1998, 53, 59.

    Google Scholar 

  13. R. Blom, A. Haaland, and J. Weidlein, J. Chem. Soc., Chem. Commun., 1985, 266.

  14. R. Blom, J. Boersma, P. H. M. Budzelaar, B. Fischer, A. Haaland, H. V. Volden, and J. Weidlein, Acta Chem Scand., Ser. A, 1986, 40, 113.

    Google Scholar 

  15. B. Fisher, P. Wijkens, J. Boersma, G. van Koten, W. J. J. Smeets, A. L. Spec, and P. H. M. Budzelaar, J. Organomet. Chem., 1989, 386, 223.

    Google Scholar 

  16. A. Berces, T. Ziegler, and L. Fan, J. Phys Chem., 1994, 98, 1584.

    Google Scholar 

  17. A. Berces and T. Ziegler, Topics in Current Chemistry, 182, Density Functional Theory III. Interpretation, Atoms, Molecules and Clusters, Ed. R. F. Nalewajski, Springer, Berlin-Heidelberg, 1996, 42.

    Google Scholar 

  18. B. V. Lokshin, N. E. Borisova, V. M. Senyavin, and M. D. Reshetova, Izv. Akad. Nauk, Ser. Khim., 2002, 1521 [Russ Chem. Bull., Int Ed., 2002, 51, 1656].

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Revision A.9, Gaussian, Inc., Pittsburgh (PA), 1998.

    Google Scholar 

  20. P. J. Hay and W. R. Wardt, J. Chem. Phys, 1985, 82, 270.

    Google Scholar 

  21. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    Google Scholar 

  23. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029.

    Google Scholar 

  24. V. A. Sipachev, J. Mol. Struct. (THEOCHEM), 1985, 121, 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokshin, B.V., Garkusha, O.G., Borisov, Y.A. et al. Structure and vibrational spectra of dicyclopentadienylzinc. A DFT study. Russian Chemical Bulletin 52, 831–836 (2003). https://doi.org/10.1023/A:1024479721442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024479721442

Navigation