Skip to main content
Log in

Proteomic Characterization of Nipple Aspirate Fluid: Identification of Potential Biomarkers of Breast Cancer

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mammary ductal cells are the origin for 70–80% of breast cancers. Nipple aspirate fluid (NAF) contains proteins directly secreted by the ductal and lobular epithelium in non-lactating women. Proteomic approaches offer a largely unbiased way to evaluate NAF as a source of biomarkers and are sufficiently sensitive for analysis of small NAF volumes (10–50 µl). In this study, we initially evaluated a new process for obtaining NAF and discovered that this process resulted in a volume of NAF that was suitable for analysis in ∼90% of subjects. Proteomic characterization of NAF identified 64 proteins. Although this list primarily includes abundant and moderately abundant NAF proteins, very few of these proteins have previously been reported in NAF. At least 15 of the NAF proteins identified have previously been reported to be altered in serum or tumor tissue from women with breast cancer, including cathepsin D and osteopontin. In summary, this study provides the first characterization of the NAF proteome and identifies several candidate proteins for future studies on breast cancer markers in NAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Howe HL, Wingo PA, Thun MJ, Ries LA, Rosenberg HM, Feigal EG, Edwards BK: Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 93: 824-842, 2001

    Google Scholar 

  2. Leitch AM: Controversies in breast cancer screening. Cancer 76: 2064-2069, 1995

    Google Scholar 

  3. Ciatto S, Rosselli, Del Turco, Zappa M: The detectability of breast cancer by screening mammography. Br J Cancer 71 337-339, 1995

    Google Scholar 

  4. Anonymous. Breast Cancer Progress Review Group Charting the Course: Priorities for Breast Cancer Research, 1998

  5. Esserman L, Cowley H, Eberle C, Kirkpatrick A, Chang S, Berbaum K, Gale A: Improving the accuracy of mammography: volume and outcome relationships. J Natl Cancer Inst 94: 369-375, 2002

    Google Scholar 

  6. Ferrini R, Mannino E, Ramsdell E, Hill L: Screening mammography for breast cancer: American College of Preventive Medicine practice policy statement. Am J Prev Med 12: 340-341, 1996

    Google Scholar 

  7. Wrensch MR, Petrakis NL, Gruenke LD, Ernster VL, Miike R, King EB, Hauck WW: Factors associated with obtaining nipple aspirate fluid: analysis of 1428 women and literature review. Breast Cancer Res Treat 15: 39-51, 1990

    Google Scholar 

  8. Shao ZM, Nguyen M: Nipple aspiration in diagnosis of breast cancer. Semin Surg Oncol 20: 175-180, 2001

    Google Scholar 

  9. Sauter ER, Ross E, Daly M, Klein-Szanto A, Engstrom PF, Sorling A, Malick J, Ehya H: Nipple aspirate fluid: a promising non-invasive method to identify cellular markers of breast cancer risk. Br J Cancer 76: 494-501, 1997

    Google Scholar 

  10. Woodbury RL, Varnum SM, Zangar RC: Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. J Proteome Res 1: 233-237, 2002

    Google Scholar 

  11. Malatesta M, Mannello F, Bianchi G, Sebastiani M, Gazzanelli G: Biochemical and ultrastructural features of human milk and nipple aspirate fluids. J Clin Lab Anal 14: 330-335, 2000

    Google Scholar 

  12. Klein P, Glaser E, Grogan L, Keane M, Lipkowitz S, Soballe P, Brooks L, Jenkins J, Steinberg SM, DeMarini DM, Kirsch I: Biomarker assays in nipple aspirate fluid. Breast J 7: 378-387, 2001

    Google Scholar 

  13. Covington C, Mitchell-Gieleghem A, Lawson D, Eto I, Grubbs C: Presence of carotenoid, an anticarcinogenic marker, in nipple aspirates postlactation. Adv Exp Med Biol 501: 143-152, 2001

    Google Scholar 

  14. Nantais-Smith LM, Covington CY, Nordstrom-Klee BA, Grubbs CJ, Eto I, Lawson DM, Pieper BA, Northouse LL: Differences in plasma and nipple aspirate carotenoid by lactation status. Nurs Res 50: 172-177, 2001

    Google Scholar 

  15. Harris JR: xDiseases of the Breast. Lippincott, Williams & Wilkins, Philadelphia, 2000

    Google Scholar 

  16. Smith PK: Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76-85, 1985

    Google Scholar 

  17. Zangar RC, Kimzey AL, Okita JR, Wunschel DS, Edwards RJ, Kim H, Okita RT: Cytochrome P450 3A conjugation to ubiquitin in a process distinct from classical ubiquitination pathway. Mol Pharmacol 61: 892-904, 2002

    Google Scholar 

  18. Eng JK, McCormack AL, Yates III JR: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5: 976-989, 1994

    Google Scholar 

  19. Washburn MP, Wolters D, Yates III JR: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242-247, 2001

    Google Scholar 

  20. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates III JR: Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17: 676-682, 1999

    Google Scholar 

  21. Petritis K, Kangas LJ, Ferguson PL, Anderson GA, Pasa-Tolic L, Lipton MS, Auberry KJ, Strittmatter E, Shen Y, Zhao R, Smith RD: Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. Anal Chem 75: 1039-1048, 2003

    Google Scholar 

  22. Mannello F, Malatesta M, Sebastiani M, Battistelli S, Gazzanelli G: Molecular forms and ultrastructural localization of prostate-specific antigen in nipple aspirate fluids. Clin Chem 45: 2263-2266, 1999

    Google Scholar 

  23. Adkins JN, Varnum SM, Auberry KJ, Moore RJ, Angell NH, Smith RD, Springer DL, Pounds JG: Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 1: 947-955, 2002

    Google Scholar 

  24. Furger KA, Menon RK, Tuck AB, Bramwelll VH, Chambers AF: The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1: 621-632, 2001

    Google Scholar 

  25. Tuck AB, Chambers AF: The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 6: 419-429, 2001

    Google Scholar 

  26. Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, Roger P: Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 291: 157-170, 2000

    Google Scholar 

  27. Mirza AN, Mirza NQ, Vlastos G, Singletary SE: Prognostic factors in node-negative breast cancer: a review of studies with Proteomic characterization of nipple aspirate fluid 97 sample size more than 200 and follow-up more than 5 years. Ann Surg 235: 10-26, 2002

    Google Scholar 

  28. Wojtukiewicz MZ, Rucinska M, Kloczko J, Dib A, Galar M: Profiles of plasma serpins in patients with advanced malignant melanoma, gastric cancer and breast cancer. Haemostasis 28: 7-13, 1998

    Google Scholar 

  29. Diez-Itza I, Vizoso F, Merino AM, Sanchez LM, Tolivia J, Fernandez J, Ruibal A, Lopez-Otin C: Expression and prognostic significance of apolipoprotein D in breast cancer. Am J Pathol 144: 310-320, 1994

    Google Scholar 

  30. Rassart E, Bedirian A, Do, Carmo S, Guinard O, Sirois J, Terrisse L, Milne R: Apolipoprotein D. Biochim Biophys Acta 1482: 185-198, 2000

    Google Scholar 

  31. Vaidya SM, Kamalakar PL: Copper and ceruloplasmin levels in serum of women with breast cancer. Indian J Med Sci 52: 184-187, 1998

    Google Scholar 

  32. Schapira DV, Schapira M: Use of ceruloplasmin levels to monitor response to therapy and predict recurrence of breast cancer. Breast Cancer Res Treat 3: 221-224, 1983

    Google Scholar 

  33. Yenisey C, Fadiloglu M, Onvural B: Serum copper and ceruloplasmin concentrations in patients with primary breast cancer. Biochem Soc Trans 24: 321S, 1996

    Google Scholar 

  34. Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK: Overexpression of clusterin in human breast carcinoma. Am J Pathol 157: 393-399, 2000

    Google Scholar 

  35. Blann AD, Gurney D, Wadley M, Bareford D, Stonelake P, Lip GY: Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagul Fibrinolysis 12: 43-50, 2001

    Google Scholar 

  36. Winston JS, Asch HL, Zhang PJ, Edge SB, Hyland A, Asch BB: Downregulation of gelsolin correlates with the progression to breast carcinoma. Breast Cancer Res Treat 65: 11-21, 2001

    Google Scholar 

  37. Bundred NJ, Scott WN, Davies SJ, Miller WR, Mansel RE: Zinc alpha-2 glycoprotein levels in serum and breast fluids: a potential marker of apocrine activity. Eur J Cancer 27: 549-552, 1991

    Google Scholar 

  38. Thean ET, Toh BH: Serum human alpha-lactalbumin as a marker for breast cancer. Br J Cancer 61: 773-775, 1990

    Google Scholar 

  39. Farghaly SA: Tumor markers in gynecologic cancer. Gynecol Obstet Invest 34: 65-72, 1992

    Google Scholar 

  40. Pagani A, Sapino A, Eusebi V, Bergnolo P, Bussolati G: PIP/GCDFP-15 gene expression and apocrine differentiation in carcinomas of the breast. Virchows Arch 425: 459-465, 1994

    Google Scholar 

  41. Luftner D, Mesterharm J, Akrivakis C, Geppert R, Petrides PE, Wernecke KD, Possinger K: Tumor type M2 pyruvate kinase expression in advanced breast cancer. Anticancer Res 20: 5077-5082, 2000

    Google Scholar 

  42. Kurt RA, Urba WJ, Schoof DD: Isolation of genes overexpressed in freshly isolated breast cancer specimens. Breast Cancer Res Treat 59: 41-48, 2000

    Google Scholar 

  43. Koths K, Taylor E, Halenbeck R, Casipit C, Wang A: Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem 268: 14245-14249, 1993

    Google Scholar 

  44. Ullrich A, Sures I, D'Egidio M, Jallal B, Powell TJ, Herbst R, Dreps A, Azam M, Rubinstein M, Natoli C: The secreted tumor-associated antigen 90K is a potent immune stimulator. J Biol Chem 269: 18401-18407, 1994

    Google Scholar 

  45. Iacobelli S, Arno E, Sismondi P, Natoli C, Gentiloni N, Scambia G, Giai M, Cortese P, Panici PB, Mancuso S: Measurement of a breast cancer associated antigen detected by monoclonal antibody SP-2 in sera of cancer patients. Breast Cancer Res Treat 11: 19-30, 1988

    Google Scholar 

  46. Iacobelli S, Sismondi P, Giai M, D'Egidio M, Tinari N, Amatetti C, Di Stefano P, Natoli C: Prognostic value of a novel circulating serum 90K antigen in breast cancer. Br J Cancer 69: 172-176, 1994

    Google Scholar 

  47. Turner MD, Rennison ME, Handel SE, Wilde CJ, Burgoyne RD: Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells. J Cell Biol 117: 269-278, 1992

    Google Scholar 

  48. King EB, Chew KL, Petrakis NL, Ernster VL: Nipple Aspirate Cytology for the Study of Breast-Cancer Precursors. J Nat Cancer Inst 71: 1115-1121, 1983

    Google Scholar 

  49. Dooley WC, Ljung BM, Veronesi U, Cazzaniga M, Elledge RM, O'shaughnessy JA, Kuerer HM, Hung DT, Khan SA, Phillips RF, Ganz PA, Euhus DM, Esserman LJ, Haffty BG, King BL, Kelley MC, Anderson MM, Schmit PJ, Clark RR, Kass FC, Anderson BO, Troyan SL, Arias RD, Quiring JN, Love SM, Page DL, King EB: Ductal lavage for detection of cellular atypia in women at high risk for breast cancer. J Nat Cancer Inst 93: 1624-1632, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varnum, S.M., Covington, C.C., Woodbury, R.L. et al. Proteomic Characterization of Nipple Aspirate Fluid: Identification of Potential Biomarkers of Breast Cancer. Breast Cancer Res Treat 80, 87–97 (2003). https://doi.org/10.1023/A:1024479106887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024479106887

Navigation