Skip to main content
Log in

Ab initio spectrograms of the molecular vibrational spectrum

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Theoretical spectrograms of the vibrational spectrum of 3,3-dimethylcyclopropene were constructed and juxtaposed with the experimental Raman and IR spectrograms. The theoretical spectrograms are represented as sets of vertical lines starting from the points corresponding to the values of the vibrational frequencies calculated from the scaled quantum-mechanical (QM) force field obtained at the HF/6-31G*//HF/6-31G* level. Two theoretical Raman spectrograms were constructed. In the first case, the heights of the vertical lines correspond to the QM values of the Raman scattering activities. In the second case they represent the relative differential Raman cross-sections calculated using the QM values of Raman scattering activities. The initial vibrational mode matrix remains virtually unchanged upon scaling of the QM force constant matrix because the dispersion of the scale factor values is low. Therefore, the heights of the theoretical lines for the IR spectrogram represent the QM intensities directly. The theoretical spectrogram based on the relative differential Raman cross-sections was shown to depict the experimental Raman spectrum more adequately. This makes it possible to use the results of the corresponding QM calculations more completely and obtain well-substantiated assignments of the vibrational frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

    Google Scholar 

  2. Yu. N. Panchenko, G. R. De Maré, and N. F. Stepanov, Russ. J. Phys. Chem., 2000, 74, Suppl. 2, 245.

    Google Scholar 

  3. Yu. N. Panchenko and A. V. Abramenkov, Zh. Fiz. Khim., 2003, 77, No. 6 [Russ. J. Phys. Chem., 2003, 77, Iss. 6 (Engl. Transl.)].

  4. Yu. N. Panchenko, J. Mol. Struct., 2001, 567-568, 217.

    Google Scholar 

  5. Yu. N. Panchenko and G. R. De Maré, J. Mol. Struct., 2002, 611, 147.

    Google Scholar 

  6. Yu. N. Panchenko, P. Pulay, and F. Török, J. Mol. Struct., 1976, 34, 283.

    Google Scholar 

  7. V. I. Pupyshev, Yu. N. Panchenko, Ch. W. Bock, and G. Pongor, J. Chem. Phys., 1991, 94, 1247.

    Google Scholar 

  8. Yu. N. Panchenko, G. R. De Maré, and V. I. Pupyshev J. Phys. Chem., 1995, 99, 17544.

    Google Scholar 

  9. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN-94, Revision B.3, Gaussian, Inc., Pittsburgh (PA), 1995.

    Google Scholar 

  10. P. L. Polavarapu, J. Phys. Chem., 1990, 94, 8106.

    Google Scholar 

  11. G. R. De Maré, Yu. N. Panchenko, A. V. Abramenkov, M. S. Baird, V. V. Tverezovskii, A. V. Nizovtsev, and I. G. Bolesov, Zh. Fiz. Khim., 2000, 74, 432 [Russ. J. Phys. Chem., 2000, 74, 361 (Engl. Transl.)].

    Google Scholar 

  12. M. J. Frisch, Y. Yamaguchi, J. F. Gaw, H. F. Schaefer, III, and J. S. Binkley, J. Chem. Phys., 1986, 84, 531.

    Google Scholar 

  13. R. D. Amos, Chem. Phys. Lett., 1986, 124, 376.

    Google Scholar 

  14. M. V. Vol´kenshtein, M. A. El´yashevich, and B. I. Stepanov, Kolebaniya molekul [Molecular Vibrations], Gostekhizdat, Moscow, 1949, 1, 600 pp. (in Russian).

    Google Scholar 

  15. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York-London-Toronto, 1955.

    Google Scholar 

  16. Yu. N. Panchenko and N. F. Stepanov, Zh. Fiz. Khim., 1995, 69, 592 [Russ. J. Phys. Chem., 1995, 69, 535 (Engl. Transl.)].

    Google Scholar 

  17. V. I. Pupyshev, N. F. Stepanov, S. V. Krasnoshchiokov, G. R. De Maré, and Yu. N. Panchenko, J. Mol. Struct., 1996, 376, 363.

    Google Scholar 

  18. S. V. Krasnoshchekov, N. F. Stepanov, and Yu. N. Panchenko, Zh. Strukt. Khim., 1998, 39, 210 [J. Struct. Chem., 1998, 39, 169 (Engl. Transl.)].

    Google Scholar 

  19. A. Komornickii and R. L. Jaffe, J. Chem. Phys., 1979, 71, 2150.

    Google Scholar 

  20. A. D. Becke, Jr., J. Chem. Phys., 1993, 98, 5648.

    Google Scholar 

  21. T. K. Ha, R. Meyer, and Hs. H. Günthard, Chem. Phys. Lett., 1978, 59, 17.

    Google Scholar 

  22. G. M. Kuramshina, F. Weinkhold, I. V. Kochikov, Yu. A. Pentin, and A. G. Yagola, Zh. Fiz. Khim., 1994, 68, 401 [Russ. J. Phys. Chem., 1994, 68, 358 (Engl. Transl.)].

    Google Scholar 

  23. Yu. A. Pentin and G. M. Kuramshina, Zh. Strukt. Khim., 1995, 36, 204 [J. Struct. Chem., 1995, 36, 180 (Engl. Transl.)].

    Google Scholar 

  24. G. M. Kuramshina and A. G. Yagola, Zh. Strukt. Khim., 1997, 38, 221 [J. Struct. Chem., 1997, 38, 181 (Engl. Transl.)].

    Google Scholar 

  25. P. P. Shorygin and L. L. Krushinskij, J. Raman Spectrosc., 1997, 28, 383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Maré, G.R., Panchenko, Y.N. & Abramenkov, A.V. Ab initio spectrograms of the molecular vibrational spectrum. Russian Chemical Bulletin 52, 817–822 (2003). https://doi.org/10.1023/A:1024475620533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024475620533

Navigation