Biomedical Microdevices

, Volume 5, Issue 1, pp 47–54 | Cite as

VCSEL Arrays as Micromanipulators in Chip-Based Biosystems

  • Aaron L. Birkbeck
  • Richard A. Flynn
  • Mihrimah Ozkan
  • Deqiang Song
  • Matthias Gross
  • Sadik C. Esener


The potential use of vertical cavity surface emitting laser (VCSEL) arrays for applications in cell analysis and tissue engineering is investigated by means of parallel optical trapping and active manipulation of biological cells on microfluidic chips. The simultaneous and independent transport of nine cells using a 3×3 array of VCSELs has been demonstrated experimentally; indicating that larger 2-dimensional array transport using individually addressable tweezers is achievable with VCSEL array devices. The transport properties of VCSEL tweezers have been investigated for various types of cells including 3T3 Murine fibroblasts, yeast, rat primary hepatocytes and human red blood cells. Due to the low relative index of refraction between the biological cell and surrounding medium and the relatively low optical power available with present VCSELs, the Laguerre-Gaussian laser mode output of the VCSEL is more favorable to use in an optical tweezer since the highest intensity is located at the outer ring of the optical aperture, producing stronger optical confinement at lower power levels. For larger biological cells or cells with a lower relative index of refraction, the power limitations of a single VCSEL were overcome through the binning of several VCSELs together by combining the outputs of a sub-array of VCSELs into a collective optical tweezer. A comprehensive analysis and simulation of how the VCSELs’ pitch and output beam divergence influence the operation of the resultant optical tweezer array is presented along with our experimental data. Employing the methods of parallel array transport and the binning of multiple VCSEL outputs, allows for the manipulation and spatial arrangement of different types of cells in a co-culture so as to facilitate the formation of engineered tissues.

optical tweezers VCSEL arrays cell viability engineered tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Ashkin, Biophys. J. 61, 569-582 (1992).Google Scholar
  2. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288-290 (1986).Google Scholar
  3. S. Bhatia and C. Chen, Biomedical Microdevices 2(2), 131-144 (1999).Google Scholar
  4. S. Bhatia, M.L. Yarmush, and M. Toner, in Methods in Molecular Medicine: Tissue Engineering Methods and Protocols, eds. J.R. Morgan and M. Yarmush (Humana Press, New Jersey, 1998), pp. 349-363.Google Scholar
  5. S.M. Block, Nature 360, 493-495 (1992).Google Scholar
  6. S.M. Block, in Noninvasive Technologies in Cell Biology, eds. J.K. Foskett and S. Grinstein (Wiley, New York, 1990), pp. 375-402.Google Scholar
  7. L. Breckenridge, P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow, R. Wilson, R. Lind, and C.D.W. Wilkinson, in Synthetic Microstructures in Biological Research, eds. J.M. Schnur, M. Peckerar, and H.M. Stratton (Plenum, New York, 1992), pp. 201-206.Google Scholar
  8. E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, Science 276, 779-781 (1997).Google Scholar
  9. D.C. Duffy, R.J. Jackman, K.M. Vaeth, K.F. Jensen, and G.M. Whitesides, Adv. Mater. 11(7), 546 (1999).Google Scholar
  10. J.C Dunn, R.G. Tompkins, and M.L. Yarmush, Biotechnol. Prog. 7, 237-245 (1991).Google Scholar
  11. R.A. Flynn, A.L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M.M. Wang, and S.C. Esener, Sens. Actuators B 87(2), 241-245 (2002).Google Scholar
  12. A. Folch, A. Ayon, O. Hurtado, M.A. Schmidt, and M. Toner, J. Biomech. Eng. 121(1), 28-34 (1999).Google Scholar
  13. A. Folch, B.H. Jo, D. Beebe, M. Toner and O. Hurtado, J. Biomed. Mater. Res. 52(2), 346-353 (2000).Google Scholar
  14. A. Folch and M.A. Smith, J. Microelectromech. Syst. 8(1), 85-89 (1999).Google Scholar
  15. E. Hecht, in Hect Optics 2nd Ed., ed. B. Spatz (Addison-Wesley, Massachusetts, 1990), pp. 211-240.Google Scholar
  16. K. Hirano, Y. Baba, Y. Matsuzawa, and A. Mizuno, Appl. Phys. Lett. 80(3), 515-517 (2002).Google Scholar
  17. R.J. Jackman, J.L. Wilbur, and G.M. Whitesides, Science 269(5224), 664-666 (1995).Google Scholar
  18. O. Kibar, R.A. Flynn, and S.C. Esener, OSA Topical Mtg. Spatial Light Modulators Tech. Digests 49-51 (1999).Google Scholar
  19. I. Martin, B. Obradovic, S. Treppo, A.J. Grodzinsky, R. Langer, L.E. Freed, and G. Vunjak-Novakovic, Biorheology 37(1–2), 141-147 (2000).Google Scholar
  20. A.D. Mehta, M. Rief, J.A. Spudich, A. Smith, and R.M. Simmons, Science 283, 1689-1695 (1999).Google Scholar
  21. Y. Ogura, K. Kagawa, and J. Tanida, Appl. Opt. 40(30), 5430-5435 (2001).Google Scholar
  22. A.T. O'Neil and M.J. Padgett, Opt. Commun. 193, 45-50 (2001).Google Scholar
  23. M. Ozkan, T. Pisanic, J. Scheel, C. Barlow, S.C. Esener, and S. N. Bhatia, The Special Issue of Langmuir on “The Biomolecular Interface” 19(5), 1532-1538 (2003).Google Scholar
  24. M. Ozkan, M.M. Wang, and S.C. Esener, Proc. OSA Optics in Computing, OtuC1–2 (2001).Google Scholar
  25. A. Schwarz, J.S. Rossier, E. Roulet, N. Mermod, M.A. Roberts, and H.H. Girault, Langmuir 14(19), 5526-5531 (1998).Google Scholar
  26. P.O. Seglen, Methods Cell Biol. 13, 29-83 (1976).Google Scholar
  27. N.B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M.J. Padgett, J. Mod. Opt. 45, 1943-1949 (1998).Google Scholar
  28. I.A. Vorobjev, H. Liang, W.H. Wright, and M.W. Berns, Biophys. J. 64, 533-538 (1993).Google Scholar
  29. M.M. Wang, M. Ozkan, P. Wen, M.D. Sanchez, E.P. Ata, C. Ozkan, O. Kibar, and S.C. Esener, Proc. Spie 4260, 68-73 (2001).Google Scholar
  30. M.M. Wang, M. Ozkan, E. Ata, P. Wen, M.D. Sanchez, C.S. Ozkan, O. Kibar, and S. C. Esener, BiOS 2001 (2001).Google Scholar
  31. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, IEEE J.Quantum Electro. 26(12), 2148-2157 (1990).Google Scholar
  32. Y.N. Xia and G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153-184 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Aaron L. Birkbeck
    • 1
  • Richard A. Flynn
    • 1
  • Mihrimah Ozkan
    • 2
  • Deqiang Song
    • 1
  • Matthias Gross
    • 1
  • Sadik C. Esener
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of California, San DiegoLa Jolla
  2. 2.Department of Electrical Engineering/Chemical and Environmental EngineeringUniversity of California, RiversideRiverside

Personalised recommendations