Skip to main content

Advertisement

Log in

Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Summary: Creatine deficiency syndromes are a newly described group of inborn errors of creatine synthesis (arginine:glycine amidinotransferase (AGAT) deficiency and guanidinoaceteate methyltransferase (GAMT) deficiency) and creatine transport (creatine transporter (CRTR) deficiency). The common clinical denominator of creatine deficiency syndromes is mental retardation and epilepsy, suggesting the main involvement of cerebral grey matter (grey matter disease). Patients with GAMT deficiency exhibit a more complex clinical phenotype with dystonic hyperkinetic movement disorder and epilepsy that in some cases is unresponsive to pharmacological treatment. The common biochemical denominator of creatine deficiency syndromes is cerebral creatine deficiency which is demonstrated by in vivo proton magnetic resonance spectroscopy. Measurement of guanidinoacetate in body fluids may discriminate GAMT (high concentration), AGAT (low concentration) and CRTR (normal concentration). Further biochemical characteristics include changes in creatine and creatinine concentrations in body fluids. GAMT and AGAT deficiency are treatable by oral creatine supplementation, while patients with CRTR deficiency do not respond to this type of treatment. Further recognition of patients will be of major importance for the estimation of the frequency, for the understanding of phenotypic variations and for treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Battini R, Leuzzi V, Carducci C, et al (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 77: 326-331.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi MC, Tosetti M, Fornai F, et al (2000) Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 47: 511-513.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi A, Bugiani M, Salomons GS, et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52: 227-231.

    Article  PubMed  CAS  Google Scholar 

  • Bodamer OA, Bloesch SH, Stöckler-Ipsiroglu S, O'Brien WE (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass-spectrometry. Clin Chim Acta 47: 1166-1182.

    Google Scholar 

  • Bremer HJ, Duran M, Kamerling JP, Przyrembel H, Wadman SK (1981) Sakaguchi reaction. In: Disturbances of Amino Acid Metabolism: Clinial Chemistry and Diagnosis. Baltimore: Urban & Schwarenberg, 439.

    Google Scholar 

  • Carducci Ca, Leuzzi V, Carducci CI, Prudente S, Mercuri L, Antonozzi I (2000) Two new severe mutations causing guanidinoacetate methyltransferase deficiency. Mol Genet Metab 71: 633-638.

    Article  PubMed  CAS  Google Scholar 

  • Cecil KM, Salomons GS, Ball WS, et al (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49(3): 401-404.

    Article  PubMed  CAS  Google Scholar 

  • Ensenauer R, Thiel T, Schwab KO, Lehnert W (2000) Presence of muscle creatine in a patient with guanidinoacetate methyltransferase (GAMT) deficiency. J Inherit Metab Dis 23 (supplement 1): 212.

    Google Scholar 

  • Ganesan V, Johnson A, Connelly A, et al (1997) Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol 17: 155-157.

    Article  PubMed  CAS  Google Scholar 

  • Greenhaff PL, Casey A, Short AH, Harris R, Soderlund D, Hultman E (1993) Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal volun-tary exercise in man. Clin Sci 187: 219-227.

    Google Scholar 

  • Guimbal C, Kilimann MW (1993) A Na+ dependent creatine transporter in rabbit brain, muscle, heart and kidney. J Biol Chem 268: 8418-8421.

    PubMed  CAS  Google Scholar 

  • Hahn KA, Salomons GS, Tackels-Horne D, et al (2002) X-liniked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70: 1349-1356.

    Article  PubMed  CAS  Google Scholar 

  • Ilas J, Miihl A, Stöckler-Ipsiroglu S (2000) Guanidinoacetate methyltransferase (GAMT) deficiency: non-invasive enzymatic diagnosis of a newly recognized inborn error of metabolism. Clin Chim Acta 290: 179-188.

    Article  PubMed  CAS  Google Scholar 

  • Ipsiroglu OS, Stromberger C, Ilas J, et al (2001) Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci 69: 1805-1815.

    Article  PubMed  CAS  Google Scholar 

  • Isbrandt D, Schmidt A, Neu A, R6per J, Steinfeld R, Ullrich K (2000) Generation of a knockout mouse model for guanidinoacetate methyltransferase (GAMT) deficiency. J Inherit Metab Dis 23 (supplement 1): 212.

    Google Scholar 

  • Item CB, Stöckler-Ipsiroglu S, Stomberger C, et al (2001) Arginine:glycine amidinotrans-ferase (AGAT) deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69: 1127-1133.

    Article  PubMed  CAS  Google Scholar 

  • Item BC, Stromberger C, Miihl A, et al (2002) Denaturing gradient electrophoresis for the molecular characterization of six patients with guanidinoacetate methyltransferase deficiency. Clin Chem 48: 767-769.

    PubMed  CAS  Google Scholar 

  • Korall H, G6ggerle M, Frauendienst-Egger G, Trefz FK (2000) Multiple disease categories screening analysis (multiscan) in urine by tandem mass spectrometry. J Inherit Metab Dis 23 (supplement 1): 8.

    Google Scholar 

  • Leuzzi V, Bianchi MC, Tosetti M, et al (2000) Brain creatine depletion: guanidinoacetate methyltransferase deficiency. Neurology 14(55): 1407-1409.

    Google Scholar 

  • Loike J, Zalutsky D, Daback E, Miranda A, Silverstein S (1988) Extracellular creatine regulates creatine uptake in rat and human muscle cells. Proc Natl Acad Sci USA 85: 807 811.

    Article  PubMed  Google Scholar 

  • Salomons GS, van Dooren SJM, Bunea D, Verhoeven NM, Degrauw TJ, Jakobs C (2001a) Creatine transporter deficiency: development of a new fuctional test for creatine uptake in cultured cells. J Inherit Metab Dis 24( supplement 1): 119.

    Google Scholar 

  • Salomons GS, van Dooren SJ, Verhoeven NM, et al (2001b) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68(6): 1497-1500.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Hess T, Wevers R, Echhardt S, Surtees RAH (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 131: 626-631.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Mayatepek E, Bachert P, Marescau B, De Deyn PP, Rating D (1998) Therapeutic trail of arginine restriction in creatine deficiency syndrome. Eur J Pediatr 157: 606-607.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Mayatepek E, Rating D (2000) Improved treatment of guanidinoacetate methyltransferase (GAMT) deficiency. J Inherit Metab Dis 23(supplement 1): 211.

    Google Scholar 

  • Stöckler S, Holzbach U, Hanefeld F, et al (1994) Creatine deficiency in the brain: a new treatable inborn error of metabolism. Pediatr Res 36: 409-413.

    PubMed  Google Scholar 

  • Stöckler S, Hanefeld F, Frahm J (1996a) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348: 789-790.

    Article  PubMed  Google Scholar 

  • Stöckler S, Isbrandt D, Hanefeld F, Schmidt B, Figura von K (1996b) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58: 914-922.

    PubMed  Google Scholar 

  • Stöckler S, Marescau B, De Deyn PP, Trijbels JMF, Hanefeld F (1997) Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism 46: 1189-1193.

    Article  PubMed  Google Scholar 

  • Struys EA, Jansen EEW, Ten Brink HJ, Verhoeven NM, var der Knaap MS, Jakobs C (1998) An accurate stable isotope dilution gas chromatographic mass spectrometric approach to the diagnosis of guanidinoacetate. J Pharm Biomed Anal 18: 659-665.

    Article  PubMed  CAS  Google Scholar 

  • Van der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P, et al (2000) Mental retardation and behavioural problems as presenting signs in a creatine synthesis defect. Ann Neurol 47: 540-543.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven NM, Schor DSM, Roos B, et al (2001) Stable-isotope dilution enzyme assays for the detection of inborn errors of creatine synthesis. J Inherit Metab Dis 24(supplement 1): 118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stromberger, C., Bodamer, O.A. & Stöckler-Ipsiroglu, S. Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26, 299–308 (2003). https://doi.org/10.1023/A:1024453704800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024453704800

Keywords

Navigation