Skip to main content
Log in

Centrifugally Driven Relativistic Dynamics on Curved Trajectories

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Motion of test particles along rotating curved trajectories is considered. The problem is studied both in the laboratory and the rotating frames of reference. It is assumed that the system rotates with the constant angular velocity ω = const. The solutions are found and analyzed for the case when the form of the trajectory is given by an Archimedes spiral. It is found that particles can reach infinity while they move along these trajectories and the physical interpretation of their behaviour is given. The analogy of this idealized study with the motion of particles along the curved rotating magnetic field lines in the pulsar magnetosphere is pointed out. We discuss further physical development (the conserved total energy case, when ω ≠ const) and astrophysical applications (the acceleration of particles in active galactic nuclei) of this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowicz, M. A. and Lasota, J. P. (1974). Acta Phys. Pol. B5, 327.

    Google Scholar 

  2. Abramowicz, M. A. and Prasanna, A. R. (1990). Mon. Not. R. Astron. Soc. 245, 720.

    Google Scholar 

  3. Abramowicz, M. A. and Miller, J. C. (1990). Mon. Not. R. Astron. Soc. 245, 729.

    Google Scholar 

  4. Abramowicz, M. A. (1990). Mon. Not. R. Astron. Soc. 245, 733.

    Google Scholar 

  5. Prasanna, A. R. (1991). Phys. Rev. D 43, 1418.

    Google Scholar 

  6. de Felice, F. (1990). Rendiconti di Matematica, Serie VII 10, 59.

    Google Scholar 

  7. de Felice, F. Mon. Not. R. Astron. Soc. 252, 197(1991).

    Google Scholar 

  8. de Felice F., and Usseglio-Tomasset, S. (1991). Class. Quantum Grav. 8, 1817.

    Google Scholar 

  9. Abramowicz, M. A. (1992). Mon. Not. R. Astron. Soc. 256, 710.

    Google Scholar 

  10. de Felice, F. and Usseglio-Tomasset, S. (1993). Class. Quantum Grav. 10, 353.

    Google Scholar 

  11. Bini, D., de Felice, F., and Jantzen, R. T. (1999). Class. Quantum Grav. 16, 2105.

    Google Scholar 

  12. Machabeli, G. Z. and Rogava, A. D. (1994). Phys. Rev. A 50, 98.

    Google Scholar 

  13. Machabeli, G. Z., Nanobashvili, I. S., and Rogava, A. D. (1996). Izv. Vuz. Radiofiz. 39, 39.

    Google Scholar 

  14. de Felice, F. (1995). Phys. Rev. A 52, 3452.

    Google Scholar 

  15. Heyl, J. S. (2000). Astrophys. J. 542, L45.

    Google Scholar 

  16. Abramowicz, M. A., Kluźniak, W., and Lasota, J. P. (2001). Astron. Astrophys. 374, L16.

    Google Scholar 

  17. Gold, T. (1968). Nature 218, 731.

    Google Scholar 

  18. Gold, T. (1969). Nature 221, 25.

    Google Scholar 

  19. Gangadhara, R. T. (1996). Astron. Astrophys. 314, 853.

    Google Scholar 

  20. Contopoulos, I., Kazanas, D., and Fendt, C. (1999). Astrophys. J. 511, 351.

    Google Scholar 

  21. Blandford, R. D., and Payne, D. G., (1982). Mon. Not. R. Astron. Soc. 199, 883.

    Google Scholar 

  22. Cao, X. (1997). Mon. Not. R. Astron. Soc. 291, 145.

    Google Scholar 

  23. Gangadhara, R. T. and Lesch, H. (1997). Astron. Astrophys. 323, L45.

    Google Scholar 

  24. Rieger, F. M. and Mannheim, K. (2000). Astron. Astrophys. 353, 473.

    Google Scholar 

  25. Osmanov, Z. N., Machabeli, G., and Rogava, A. D. (2002). Phys. Rev. A 66, 042103.

    Google Scholar 

  26. Rindler, W. (1960). Special Relativity, Oliver and Boyd, Edinburgh.

    Google Scholar 

  27. Thorne, K. S., and MacDonald, D. A. (1982). Mon. Not. R. Astron. Soc. 198, 339.

    Google Scholar 

  28. MacDonald, D. A. and Thorne, K. S. (1982). Mon. Not. R. Astron. Soc. 198, 345.

    Google Scholar 

  29. Thorne, K. S., Price, R. H., and MacDonald, D. A. (Eds.) (1986). Black Holes: The Membrane Paradigm, Yale University Press, New Haven, Connecticut.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogava, A., Dalakishvili, G. & Osmanov, Z. Centrifugally Driven Relativistic Dynamics on Curved Trajectories. General Relativity and Gravitation 35, 1133–1152 (2003). https://doi.org/10.1023/A:1024450105374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024450105374

Navigation