Advertisement

Genetica

, Volume 119, Issue 1, pp 99–106 | Cite as

FISH-Mapping of 18S Ribosomal RNA Genes and Telomeric Sequences in the Japanese Bitterlings Rhodeus ocellatus kurumeus and Tanakia limbata (Pisces, Cyprinidae) Reveals Significant Cytogenetic Differences in Morphologically Similar Karyotypes

  • L. Sola
  • E. Gornung
  • H. Naoi
  • R. Gunji
  • C. Sato
  • K. Kawamura
  • R. Arai
  • T. Ueda
Article

Abstract

The Japanese rose bitterling, Rhodeus ocellatus kurumeus, and the oily bitterling, Tanakia limbata, were cytogenetically studied by silver (Ag)- and chromomycin A3 (CMA3)-staining, by C-banding and by mapping of the 18S ribosomal genes and of the (TTAGGG) n telomeric sequence. These two representative species of related genera of the subfamily Acheilognathinae show very similar chromosome complements. Nevertheless, significant differences in the chromosomal distribution of nucleolus organizer regions (NORs) and interstitial telomeric sequences were observed. Whereas R. ocellatus kurumeus shows a single NOR-bearing chromosome pair, T. limbata is characterized by a higher number of variable NORs. Multiple telomeric sequence sites were found at the pericentromeric regions of several chromosomes in the rose bitterling. No telomeric sequence sites were detected near centromeres, but they were found to be scattered along the NORs in the oily bitterling. Two karyoevolutive trends might have been identified in the subfamily.

Acheilognathinae bitterlings Cyprinidae FISH 18S rDNA telomeric sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, R. & Y. Akai, 1988. Acheilognathus melanogaster, a senior synonym of A. moriokae, with a revision of the genera of the subfamily Acheilognathinae (Cypriniformes, Cyprinidae). Bull. Natl. Sci. Mus. Tokyo, (A) 14: 199–213.Google Scholar
  2. Ashley, T. & D.C. Ward, 1993. A 'hot spot' of recombination coincides with an interstitial telomeric sequence in the Armenian hamster. Cytogenet. Cell Genet. 62: 169–171.Google Scholar
  3. Caputo, V., M. Sorice, R. Vitturi, R. Magistrelli & E. Olmo, 1998. Cytogenetic studies in some species of Scorpaeniformes (Teleostei: Percomorpha). Chromosome Res. 6: 255–262.Google Scholar
  4. Chew, J.S.K., C. Oliveira, J.M. Wright & M.J. Dobson, 2002. Molecular and cytogenetic analysis of the telomeric (TTAGGG)n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosoma 111: 45–52.Google Scholar
  5. Fontana, F., M. Lanfredi, M. Chicca, V. Aiello & R. Rossi, 1998. Localization of the repetitive telomeric sequence (TTAGGG)n in four sturgeon species. Chromosome Res. 6: 303–306.Google Scholar
  6. Gornung, E.M., I. Gabrielli & L. Sola, 1998. Localization of the (TTAGGG)n telomeric sequences in zebrafish chromosomes. Genome 41: 136–138.Google Scholar
  7. Howell, W.M. & D.A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1–step method. Experientia 36: 1014–1015.Google Scholar
  8. John, B. & G.L.G. Miklos, 1979. Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol. 58: 1–114.Google Scholar
  9. Kawamura, K., T. Ueda, R. Arai, Y. Nagata, K. Saitoh, H. Ohtaka & Y. Kanoh, 2001. Genetic introgression by the rose bitterling, Rhodeus ocellatus ocellatus, into the Japanese rose bitterling, R. ocellatus kurumeus (Teleostei: Cyprinidae). Zool. Sci. 18: 1027–1039.Google Scholar
  10. Kilburn, A.E., M.J. Shea, R.G. Sargent & J.H. Wilson, 2001. Insertion of a telomere repeat sequences into a mammalian gene causes chromosome instability. Mol. Cell Biol. 21: 126–135.Google Scholar
  11. Lichter, P., A. Boyle, J. Wienberg, N. Arnold, S. Popp, T. Cremer & D.C. Ward, 1992. In situ hybridization to human metaphase chromosomes using DIG-or biotin-labeled DNA probes and detection with fluorochrome conjugates, pp. 25–27 in Nonradioactive In situ Hybridization (Application Manual). Boehringer Mannheim, Biochemica, Mannheim.Google Scholar
  12. Mandrioli, M. & G.C. Manicardi, 2001. Cytogenetic and molecular analysis of the pufferfish Tetraodon fluviatilis (Osteichthyes). Genetica 111: 433–438.Google Scholar
  13. Meyne, J., R.L. Ratliff & R.K. Moyzis, 1989. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA 89: 7049–7053.Google Scholar
  14. Meyne, J., R.J. Baker, H.H. Hobart, T.C. Hsu, O.A. Ryder, O.G. Ward, J.E. Wiley, D.H. Wurster-Hill, T.L. Yates & R.K. Moyzis, 1990. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequences in vertebrate chromosomes. Chromosoma 99: 3–10.Google Scholar
  15. Meyne, J., H. Hirai & H.T. Imai, 1995. FISH analysis of the telomere sequences of bulldog ants (Myrmecia: Formicidae). Chromosoma 104: 14–18.Google Scholar
  16. Ojima, Y., K. Ueno & M. Hayashi, 1973. Karyotypes of the acheilognathine fishes (Cyprinidae) of Japan with a discussion of phylogenetic problems. Zool. Mag. (Tokyo) 82: 171–177 (in Japanese with English abstract).Google Scholar
  17. Okazaki, M., K. Naruse, A. Shima & R. Arai, 2001. Phylogenetic relationships of bitterlings based on mitochondrial 12S ribosomal DNA sequences. J. Fish Biol. 58: 89–106.Google Scholar
  18. Pagnozzi, J.M., M.J.D. Silva & Y. Yonenaga-Yassuda, 2000. Intraspecific variation in the distribution of the interstitial telomeric (TTAGGG)n sequences in Micoureus demerarae (Marsupialia: Didelphidae). Chromosome Res. 8: 585–591.Google Scholar
  19. Reed, K.M. & R.B. Phillips, 1995. Molecular cytogenetic analysis of the double-CMA3 chromosome of lake trout, Salvelinus namaycush. Cytogenet. Cell Genet. 70: 104–107.Google Scholar
  20. Salvadori, S., A.M. Deiana, E. Coluccia, G. Floridia, E. Rossi & O. Zuffardi, 1995. Colocalization of (TTAGGG)n telomeric sequences and ribosomal genes in Atlantic eels. Chromosome Res. 3: 54–58.Google Scholar
  21. Slijepcevic, P., Y. Xiao, I. Dominguez & A.T. Natarajan, 1996. Spontaneous and radiation-induced chromosomal breakage at interstitial telomeric sites. Chromosoma 104: 596–604.Google Scholar
  22. Sola, L., A.R. Rossi, V. Iaselli, E.M. Rasch & P.J. Monaco, 1992. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, Chromomycin A3, and silver staining. Cytogenet. Cell Genet. 60: 229–235.Google Scholar
  23. Sumner, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306.Google Scholar
  24. Takai, A. & Y. Ojima, 1986. Some features on nucleolus organizer regions in fish chromosomes, pp. 899–909 in Indo-Pacific Fish Biology: Proceedings of the Second International Conference of Indo-Pacific Fishes, edited by T. Uyeno, R. Arai, T. Taniuchi & K. Matsuura. Ichthyological Society of Japan, Tokyo.Google Scholar
  25. Ueda, T., M. Hayashi, N. Koide, T. Sofuni & J. Kobayashi, 1991. Preliminary examination of the mutagenicity test using embryo cells of rose bitterling, Rhodeus ocellatus ocellatus. Chrom. Inf. Serv. 51: 12–14.Google Scholar
  26. Ueda, T. & J. Kobayashi, 1991. Chromosomal polymorphisms in oily bitterling Acheilognathus limbatus. Chrom. Inf. Serv. 50: 13–14.Google Scholar
  27. Ueda, T., N. Mashiko, H. Takizawa, Y. Akai, T. Ishinabe, R. Arai & H. Wu, 1997. Ag-NOR variation in chromosomes of Chinese bitterlings, Rhodeus lighti and Tanakia himantegus (Cypriniformes, Cyprinidae). Ichtyol. Res. 44: 302–305.Google Scholar
  28. Ueda, T., H. Naoi & R. Arai, 2001. Flexibility on the karyotype evolution in bitterlings (Pisces, Cyprinidae). Genetica 111: 423–432.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • L. Sola
    • 1
  • E. Gornung
    • 1
  • H. Naoi
    • 2
  • R. Gunji
    • 2
  • C. Sato
    • 2
  • K. Kawamura
    • 3
  • R. Arai
    • 4
  • T. Ueda
    • 2
  1. 1.Department of Animal and Human BiologyUniversity of Rome I “La Sapienza”RomeItaly
  2. 2.Department of Biology, Faculty of EducationUtsunomiya UniversityUtsunomiyaJapan
  3. 3.National Research Institute of AquacultureNansei, MieJapan
  4. 4.Department of Zoology, University MuseumUniversity of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations