Skip to main content
Log in

Imparting Bone Affinity to Glycoproteins Through the Conjugation of Bisphosphonates

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To develop a novel means of conjugating bisphosphonates onto the carbohydrate moieties of glycoproteins to enhance protein affinity to bone.

Methods. 1-Amino-1,1-diphosphonate methane (aminoBP) was conjugated onto the carbohydrate moietites of oxidized fetuin by using 4-(maleimidomethyl)cyclohexane-1-carboxyl-hydrazide (MMCCH). Bone affinity of the resulting conjugates was compared to proteins obtained from another means of conjugation, whereby aminoBP was conjugated onto fetuin's lysine moieties by using succinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC).

Results. The use of the MMCCH resulted in the conjugation of up to seven aminoBPs per molecule of fetuin. These conjugates gave a 2.6-, 2.0-, 30.5-, and 1.84-fold increased affinity for untreated, ashed, demineralized bone and hydroxyapatite, respectively, as compared to conjugates from the SMCC reaction. Both conjugates exhibited a pH-independent, equally slow degradation in adult bovine serum-containing media.

Conclusion. The use of the MMCCH chemistry to conjugate aminoBP onto fetuin was feasible. Furthermore, the described processes of conjugation resulted in amino-BP-dependent increase in the glycoprotein's affinity to various bone matrices in a manner that exceeds the affinity produced by the previously established method, which used SMCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Sherman. Preventing and treating osteoporosis: strategies at the millennium. Ann. NY Acad. Sci. 949:188-197 (2001).

    Google Scholar 

  2. S. A. Gittens and H. Uludag. Growth factor delivery for bone tissue engineering. J. Drug Target. 9:407-429 (2001).

    Google Scholar 

  3. H. Nagai, R. Tsukuda, and H. Mayahara. Effects of basic fibroblast growth factor (bFGF) on bone formation in growing rats. Bone 16:367-373 (1995).

    Google Scholar 

  4. G. Mazue, A. J. Newman, G. Scampini, P. Della Torre, G. C. Hard, M. J. Iatropoulos, G. M. Williams, and S. M. Bagnasco. The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human basic fibroblast growth factor. Toxicol. Pathol. 21:490-501 (1993).

    Google Scholar 

  5. H. Uludag, N. Kousinioris, T. Gao, and D. Kantoci. Bisphosphonate conjugation to proteins as a means to impart bone affinity. Biotechnol. Prog. 16:258-267 (2000).

    Google Scholar 

  6. H. Uludag, T. Gao, G. R. Wohl, D. Kantoci, and R. F. Zernicke. Bone affinity of a bisphosphonate-conjugated protein in vivo. Biotechnol. Prog. 16:1115-1118 (2000).

    Google Scholar 

  7. H. Uludag. and J. Yang. Targeting systemically administered proteins to bone by bisphosphonate conjugation. Biotechnol. Prog. 18:604-611 (2002).

    Google Scholar 

  8. D. Voet and J. G. Voet. Biochemistry, John Wiley & Sons, New York, 1995.

    Google Scholar 

  9. D. F. Wyss and G. Wagner. The structural role of sugars in glycoproteins. Curr. Opin. Biotechnol. 7:409-416 (1996).

    Google Scholar 

  10. D. J. O'Shannessy and R. H. Quarles. Labeling of the oligosaccharide moieties of immunoglobulins. J. Immunol. Methods 99:153-161 (1987).

    Google Scholar 

  11. T. O. Harasym, M. B. Bally, and P. Tardi. Clearance properties of liposomes involving conjugated proteins for targeting. Adv. Drug Deliv. Rev. 32:99-118 (1998).

    Google Scholar 

  12. P.A. De Bank. B. Kellam, D.A. Kendall, and K.M. Shakesheff. Surface engineering of living myoblasts via selective periodate oxidation. Biotechnol. Bioeng. 81:800-808 (2003).

    Google Scholar 

  13. S. F. Atkinson, T. Bettinger, L. W. Seymour, J. P. Behr, and C. M. Ward. Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells. J. Biol. Chem. 276:27930-27935 (2001).

    Google Scholar 

  14. S. M. Chamow, T. P. Kogan, D. H. Peers, R. C. Hastings, R. A. Byrn, and A. Ashkenazi. Conjugation of soluble CD4 without loss of biological activity via a novel carbohydrate-directed cross-linking reagent. J. Biol. Chem. 267:15916-15922 (1992).

    Google Scholar 

  15. R. G. Spiro and V. D. Bhoyroo. Structure of the O-glycosidically linked carbohydrate units of fetuin. J. Biol. Chem. 249:5704-5717 (1974).

    Google Scholar 

  16. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 (1976).

    Google Scholar 

  17. R. Fields and H. B. Dixon. Micro method for determination of reactive carbonyl groups in proteins and peptides, using 2,4-dinitrophenylhydrazine. Biochem. J. 121:587-589 (1971).

    Google Scholar 

  18. B. N. Ames. Assay of inorganic phosphate, total phosphate, and phosphatases. In E.F. Neufield and V. Ginsburg (eds.), Methods in Enzymology, Vol. VIII, Complex Carbohydrates, Academic Press, New York, 1966, pp. 115-117.

    Google Scholar 

  19. R. G. Spiro. Periodate oxidation of the glycoprotein fetuin. J. Biol. Chem. 239:567-573 (1964).

    Google Scholar 

  20. I. Bouchez-Mahiout, C. Doyen, and M. Lauriere. Accurate detection of both glycoproteins and total proteins on blots: control of side reactions occurring after periodate oxidation of proteins. Electrophoresis 20:1412-1417 (1999).

    Google Scholar 

  21. H. Lis and N. Sharon. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem. 218:1-27 (1993).

    Google Scholar 

  22. K. Bessho, Y. Konishi, S. Kaihara, K. Fujimura, Y. Okubo, and T. Iizuka. Bone induction by Escherichia coli–derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br. J. Oral Maxillofac. Surg. 38:645-649 (2000).

    Google Scholar 

  23. N. R. Kubler, M. Moser, K. Berr, G. Faller, T. Kirchner, W. Sebald, and J. F. Reuther. Biological activity of E. coli expressed BMP-4. Mund Kiefer Gesichtschir. 2:S149-S152 (1998).

    Google Scholar 

  24. T. K. Sampath. J. E Coughlin, R. M. Whetstone, D. Banach, C. Corbett, R. J. Ridge, E. Ozkaynak, H. Oppermann, and D. C. Rueger. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J. Biol. Chem. 265:13198-13205 (1990).

    Google Scholar 

  25. N. M. Wolfman, G. Hattersley, K. Cox, A. J. Celeste, R. Nelson, N. Yamaji, J. L. Dube, E. DiBlasio-Smith, J. Nove, J. J. Song, J. M. Wozney, and V. Rosen. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J. Clin. Invest. 100:321-330 (1997).

    Google Scholar 

  26. G. Garke, W. D. Deckwer, and F. B. Anspach. Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli. J. Chromatogr. B Biomed. Sci. Appl. 737:25-38 (2000).

    Google Scholar 

  27. K. Thompson, J. E. Dunford, F. H. Ebetino, and M. J. Rogers. Identification of a bisphosphonate that inhibits isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Biochem. Biophys. Res. Commun. 290:869-873 (2002).

    Google Scholar 

  28. M. J. Gorbunoff. The interaction of proteins with hydroxyapatite. II. Role of acidic and basic groups. Anal. Biochem. 136:433-439 (1984).

    Google Scholar 

  29. M. Suzuki, H. Shimokawa, Y. Takagi, and S. Sasaki. Calcium-binding properties of fetuin in fetal bovine serum. J. Exp. Zool. 270:501-507 (1994).

    Google Scholar 

  30. C. F. Foulon, D. D. Bigner, and M. R. Zalutsky. Preparation and characterization of anti-tenascin monoclonal antibody-streptavidin conjugates for pretargeting applications. Bioconjug. Chem. 10:867-876 (1999).

    Google Scholar 

  31. H. Karacay, R. M. Sharkey, S. V. Govindan, W. J. McBride, D. M. Goldenberg, H. J. Hansen, and G. L. Griffiths. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Reagent development. Bioconjug. Chem. 8:585-594 (1997).

    Google Scholar 

  32. G. Ragupathi, R. R. Koganty, D. Qiu, K. O. Lloyd, and P. O. Livingston. A novel and efficient method for synthetic carbohydrate conjugate vaccine preparation: synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl)cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Glycoconj. J. 15:217-221 (1998).

    Google Scholar 

  33. G. Ragupathi, L. Howard, S. Cappello, R. R. Koganty, D. Qiu, B. M. Longenecker, M. A. Reddish, K. O. Lloyd, and P. O. Livingston. Vaccines prepared with sialyl-Tn and sialyl-Tn trimers using the 4-(4-maleimidomethyl)cyclohexane-1-carboxyl hydrazide linker group result in optimal antibody titers against ovine submaxillary mucin and sialyl-Tn-positive tumor cells. Cancer Immunol. Immunother. 48:1-8 (1999).

    Google Scholar 

  34. C. A. Wolfe and D. S. Hage. Studies on the rate and control of antibody oxidation by periodate. Anal. Biochem. 231:123-130 (1995).

    Google Scholar 

  35. D. Horak, M. Karpisek, J. Turkova, and M. Benes. Hydrazide-functionalized poly(2-hydroxyethyl methacrylate) microspheres for immobilization of horseradish peroxidase. Biotechnol. Prog. 15:208-215 (1999).

    Google Scholar 

  36. W. Jahnen-Dechent, T. Schinke, A. Trindl, W. Muller-Esterl, F. Sablitzky, S. Kaiser, and M. Blessing. Cloning and targeted deletion of the mouse fetuin gene. J. Biol. Chem. 272:31496-31503 (1997).

    Google Scholar 

  37. M. Szweras, D. Liu, E. A. Partridge, J. Pawling, B. Sukhu, C. Clokie, W. Jahnen-Dechent, H. C. Tenenbaum, C. J. Swallow, M. D. Grynpas, and J. W. Dennis. alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J. Biol. Chem. 277:19991-19997 (2002).

    Google Scholar 

  38. H. Uludag. Bisphosphonates as a foundation of drug delivery to bone. Curr. Pharm. Des. 8:1929-1944 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Uludağ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gittens, S.A., Matyas, J.R., Zernicke, R.F. et al. Imparting Bone Affinity to Glycoproteins Through the Conjugation of Bisphosphonates. Pharm Res 20, 978–987 (2003). https://doi.org/10.1023/A:1024445903306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024445903306

Navigation