Skip to main content
Log in

A Simple Approach to the 1:1 Resonance Bifurcation in Follower-Load Problems

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the problem of 1:1 resonance in autonomous, timereversible systems. We first present an abstract treatment for n-dimensionalsecond-order systems, and then apply our method to two simplemechanical examples involving follower loads. As the magnitude of the follower load is increased past a criticalvalue, the trivial solution loses stability as the real-valuedfrequencies of the linearized system first coalesce and then splitapart with complex-conjugate values. In Hamiltonian systems this isusually referred to as the Hamiltonian–Hopf bifurcation. Some novelfeatures of our analysis are the direct exploitation of reversibilityand a Liapunov–Schmidt reduction of the second-order (Newtonian)equations of motion, the latter of which requires no complexification.The analysis of the resulting two-parameter, one-dimensionalbifurcation equation yields the possibility that families ofnontrivial periodic solutions may exist for load values in excess of the critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanderbauwhede, A., 'Hopf bifurcation for equivariant conservative and time-reversible systems', Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 116(1–2), 1990, 103–128.

    Google Scholar 

  2. Golubitsky, M., Marsden, J. E., Stewart, I., and Dellnitz, M., 'The constrained Liapunov–Schmidt procedure and periodic orbits', in Normal Forms and Homoclinic Chaos Waterloo, ON, 1992, American Mathematical Society, Providence, RI, 1995, pp. 81–127.

    Google Scholar 

  3. O'Reilly, O. M., Malhotra, N. K., and Namachchivaya, N. S., 'Some aspects of destabilization in reversible dynamical systems with application to follower forces', Nonlinear Dynamics 10(1), 1996, 63–87.

    Google Scholar 

  4. Timoshenko, S. P., Theory of Elastic Stability, McGraw-Hill, New York, 1961.

    Google Scholar 

  5. Ziegler, H., Principles of Structural Stability, Blaisdell, Waltham, MA, 1968.

    Google Scholar 

  6. Herrmann, G. and Bungay, R. W., 'On the stability of elastic systems subjected to nonconservative forces', ASME, Journal of Applied Mechanics 31, 1964, 435–440.

    Google Scholar 

  7. Jin, J.-D. and Matsuzaki, Y., 'Bifurcations in a two-degree-of-freedom elastic system with follower forces', Journal of Sound and Vibration 126(2), 1988, 265–277.

    Google Scholar 

  8. Thomsen, J. J., 'Chaotic dynamics of the partially follower-loaded elastic double pendulum', Journal of Sound and Vibration 188(3), 1995, 385–405.

    Google Scholar 

  9. Herrmann, G. and Jong, I. C., 'On nonconservative stability problems of elastic systems with slight damping', ASME, Journal of Applied Mechanics 33, 1966, 125–133.

    Google Scholar 

  10. Joseph, P., Pandiyan, R., and Sinha, S. C., 'Optimal control of mechanical systems subjected to periodic loading via Chebyshev polynomials', Optimal Control Applications and Methods 14(2), 1993, 75–90.

    Google Scholar 

  11. Joseph, P. and Sinha, S. C., 'Control of general dynamic systems with periodically varying parameters via Liapunov–Floquet transformation', ASME, Journal of Dynamic Systems, Measurement, and Control 116, 1994, 650–658.

    Google Scholar 

  12. Golubitsky, M. and Schaeffer, D. G., Singularities and Groups in Bifurcation Theory. Vol. I, Springer, New York, 1985.

    Google Scholar 

  13. Crandall, M. and Rabinowitz, P., 'Bifurcation from simple eigenvalues', Journal of Functional Analysis 8, 1971, 321–340.

    Google Scholar 

  14. Golubitsky, M., Stewart, I., and Schaeffer, D. G., Singularities and Groups in Bifurcation Theory. Vol. II, Springer, New York, 1988.

    Google Scholar 

  15. Antman, S. S., Nonlinear Problems of Elasticity, Springer, New York, 1995.

    Google Scholar 

  16. Bolotin, V. V., Nonconservative Problems of the Theory of Elastic Stability, Macmillan, New York, 1963.

    Google Scholar 

  17. Healey, T. J. and Kielhöfer, H., 'Free nonlinear vibrations for a class of two-dimensional plate equations: Standing and discrete-rotating waves', Nonlinear Analysis 29(5), 1997, 501–531.

    Google Scholar 

  18. Kato, T., Perturbation Theory for Linear Operators, Springer, New York, 1966.

    Google Scholar 

  19. Kielhöfer, H., 'Bifurcation of periodic solutions for a semilinear wave equation', Journal of Mathematical Analysis and Applications 68(2), 1979, 408–420.

    Google Scholar 

  20. Leipholz, H., Stability Theory. An Introduction to the Stability of Dynamic Systems and Rigid Bodies, Academic Press, New York, 1970 [Translated from German by Scientific Translation Service].

    Google Scholar 

  21. Leipholz, H., Stability of Elastic Systems, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980 [translated from German].

    Google Scholar 

  22. MacEwen, K.W., 'Large amplitude oscillations of elastic rods', Ph.D. Thesis, Cornell University, NY, 1999.

    Google Scholar 

  23. Vanderbauwhede, A., 'Hopf bifurcation at nonsemisimple eigenvalues', in Multiparameter Bifurcation Theory, Arcata, CA, 1985, American Mathematical Society, Providence, RI, 1986, pp. 343–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacEwen, K.W., Healey, T.J. A Simple Approach to the 1:1 Resonance Bifurcation in Follower-Load Problems. Nonlinear Dynamics 32, 143–159 (2003). https://doi.org/10.1023/A:1024434731623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024434731623

Navigation