Skip to main content
Log in

Correlation between Polymorphism of the Genes for Transferrin and Angiotensin-Converting Enzyme and Antioxidant Activity of Blood Plasma

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In 75 male and 46 female subjects of an urban population (93% Russians) and in 38 males and 40 females of a rural population (87% Russians), the antioxidant activity (AOA) of blood plasma was determined from the plasma ability to reduce the yield of products interacting with thiobarbituric acid in the model lecithin–Fe2+ ion system. In the urban population, the loci TF(AvaI in exon5) and ACE (I/D polymorphism of the Alu repeat in intron16) were studied in 130 and 141 subjects, respectively. Of them, 102 and 111 subjects, respectively, were examined for AOA. In the rural population, the corresponding sample sizes were 75 and 76 (73 and 74 subjects were examined for AOA). The polymorphic loci of the urban and rural populations did not differ in the allele frequencies. In both populations Hardy–Weinberg and gametic equilibria were observed. The contributions of the TF and ACE genes to AOA variation in the combined sample from the urban and rural populations were 0.6 and 0.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Velichkovskii, B.T., Free Radical-Mediated Oxidation as a Step in Immediate and Long-Term Adaptation of the Organism to Environmental Factors, Vestn. Rus. Akad. Med. Nauk, 2001, no. 6, pp. 45-52.

    Google Scholar 

  2. ladimirov, Yu.A., Free Radicals and Antioxidants, Vestn. Rus. Akad. Med. Nauk, 1998, no. 7, pp. 43-51.

    Google Scholar 

  3. Mates, J.M. and Sanches-Jimenes, F.M., Role of Reactive Oxygen Species in Apoptosis: Implications for Cancer Therapy, Int. J. Biochem. Cell Biol., 2000, vol. 32, no. 2, pp. 157-170.

    Google Scholar 

  4. Lenaz, G., Role of Mitochondria in Oxidative Stress and Aging, Biochim. Biophys. Acta, 1998, vol. 1366, nos. 1-2, pp. 53-67.

    Google Scholar 

  5. Halliwell, B., Free Radicals, Antioxidants, and Human Disease: Curiosity, Cause, or Consequence?, Lancet, 1994, vol. 344, pp. 721-724.

    Google Scholar 

  6. Dubinina, E.E., The Antioxidant System of Blood Plasma, Ukr. Bot. Zh., 1992, vol. 64, no. 2, pp. 3-15.

    Google Scholar 

  7. Zborovskaya, I.A. and Bannikova, M.V., The Antioxidant System of the Organism, Its Role in Metabolism, and Clinical Aspects, Vestn. Rus. Akad. Med. Nauk, 1995, no. 6, pp. 53-59.

    Google Scholar 

  8. Zhuravlev, A.I., Bioantioxidants in the Animal Organism, Tr. Mosk. O-va Ispyt. Prir., 1982, vol. 52, pp. 15-29.

    Google Scholar 

  9. Halliwell, B. and Gutteridge, J.M.C., The Antioxidants of Human Extracellular Fluids, Arch. Biochem. Biophys., 1990, vol. 280, no. 1, pp. 1-8.

    Google Scholar 

  10. Berry, E.M. and Kohen, R., Is the Biological Antioxidant System Integrated and Regulated?, Med. Hypotheses, 1999, vol. 53, no. 5, pp. 397-401.

    Google Scholar 

  11. Lewin, G. and Popov, I., The Antioxidant System of the Organism: Theoretical Basis and Practical Consequences, Med. Hypotheses, 1994, vol. 42, no. 4, pp. 269-275.

    Google Scholar 

  12. Zaitsev, V.G. and Zakrevskii, V.I., Technical Aspects of Studies of Free Radical-Mediated Oxidation and the Antioxidant System of the Organism, Vestn. Volgograd. Med. Akad., 1998, no. 4, pp. 49-53.

    Google Scholar 

  13. Klebanov, G.I., Teselkin, Yu.O., Babenkova, I.V., et al., The Antioxidant Activity of Serum, Vestn. Rus. Akad. Med. Nauk, 1999, no. 2, pp. 15-22.

    Google Scholar 

  14. Cao, G. and Prior, R.L., Comparison of Different Analytical Methods for Assessing Total Antioxidant Capacity of Human Serum, Clin. Chem., 1998, vol. 44, no. 6, pp. 1309-1315.

    Google Scholar 

  15. Wang, X.L., Rainwater, D.L., VandeBerg, J.F., et al., Genetic Contributions to Total Plasma Antioxidant Activity, Arterioscler. Thromb. Vasc. Biol., 2001, vol. 21, no. 7, pp. 1102-1103.

    Google Scholar 

  16. Marussin, A.V., Puzyrev, V.P., and Bragina, E.Yu., Population Genetic Analysis of the Variation in Antioxidant Activity of Human Plasma, Sib. Med. Zh., 2001, vol. 16, no. 1, pp. 41-46.

    Google Scholar 

  17. Eliseeva, Yu.E., Angiotensin-Converting Enzyme and Its Physiological Role, Vopr. Med. Khim., 2001, vol. 47, no. 1, pp. 43-54.

    Google Scholar 

  18. Griendling, K.K., Minieri, C.A., Ollerenshaw, J.D., and Alexander, R.W., Angiotensin II Stimulates NADH and NADPH Oxidase Activity in Cultured Vascular Smooth Muscle Cells, Circ. Res., 1994, vol. 74, no. 6, pp. 1141-1148.

    Google Scholar 

  19. Rajagopalan, S., Kurz, S., Munzel, T., et al., Angiotensin II-Mediated Hypertension in the Rat Increases Vascular Superoxide Production via Membrane NADH/NADPH Oxidase Activation: Contribution to Alterations of Vasomotor Tone, J. Clin. Invest., 1996, vol. 97, no. 8, pp. 1916-1923.

    Google Scholar 

  20. Faure-Delanef, L., Baudin, B., Beneteau-Burnat, B., et al., Plasma Concentration, Kinetic Constants, and Gene Polymorphism of Angiotensin I-Converting Enzyme in Centenarians, Clin. Chem., 1998, vol. 44, no. 10, pp. 2083-2087.

    Google Scholar 

  21. Rigat, B., Hubert, C., Alhenc-Gelas, F., et al., An Insertion/Deletion Polymorphism in the Angiotensin I-Converting Enzyme Gene Accounting for Half the Variance of Serum Enzyme Levels, J. Clin. Invest., 1990, vol. 86, pp. 1343-1346.

    Google Scholar 

  22. Semenova, I.V., Ernestova, L.S., Konev, V.V., and Ryabchenko, N.I., Employment of the Lipid Peroxidation Technique in Biotesting Waters, Gig. Sanit., 1997, no. 1, pp. 51-52.

    Google Scholar 

  23. Kutmin, A.I. and Marussin, A.V., The Antioxidant Activity of Plasma in People Exposed to Chronic Low-Ionizing Irradiation, Byull. Eksp. Biol. Med., 1999, vol. 127, pril. 1, pp. 34-37.

    Google Scholar 

  24. Johns, M. and Paulus-Thomas, J., Purification of Human Genomic DNA from Whole Blood Using Sodium Perchlorate in Place of Phenol, Anal. Biochem., 1989, vol. 80, no. 2, pp. 276-278.

    Google Scholar 

  25. Beckman, L.E., Van Landeghem, G.F., Sikstrom, C., and Beckman, L., DNA Polymorphisms and Haplotypes in the Human Transferrin Gene, Hum. Genet., 1998, vol. 102, no. 2, pp. 141-144.

    Google Scholar 

  26. Spiridonova, M.G., A Molecular Genetic Study of Susceptibility to Coronary Atherosclerosis, Cand. Sci. (Biol.) Dissertation, Tomsk, 1999.

  27. Rigat, B., Hubert, C., Corvol, P., and Soubrier, F., PCR Insertion/Deletion Polymorphism of the Human Angiotensin-Converting Enzyme Gene (DCP1) (Dipeptidyl Carboxypeptidase), Nucleic Acids Res., 1992, vol. 20, p. 1433.

    Google Scholar 

  28. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  29. Sing, C.F. and Davignon, J., Role of the Apolipoprotein E Polymorphism in Determining Normal Plasma Lipid and Lipoprotein Variation, Am. J. Hum. Genet., 1985, vol. 37, no. 2, pp. 268-285.

    Google Scholar 

  30. Boerwinkle, E. and Sing, C.F., Bias of the Contribution of Single-Locus Effects to the Variance of a Quantitative Trait, Am. J. Hum. Genet., 1986, vol. 39, no. 1, pp. 137-144.

    Google Scholar 

  31. Zhivotovsky, L.A., Populyatsionnaya biometriya (Population Biometry), Moscow: Nauka, 1991.

    Google Scholar 

  32. Blumenthal, M.N., Namboodiri, K.K., Mendell, N., et al., Genetic Transmission of Serum IgE Levels, Am. J. Med. Genet., 1981, vol. 10, pp. 219-228.

    Google Scholar 

  33. Bankova, V.V., Nikanorova, T.M., Polyakov, S.D., and Tagieva, T.A., Malonic Aldehyde Degradation and Its Age-Dependent, Seasonal, and Daily Changes, Vopr. Med. Khim., 1988, vol. 34, no. 6, pp. 27–30.

    Google Scholar 

  34. Van de Vijver, L.P., Van Duyvenvoorde, W., Buytenhek, R., et al., Seasonal Variation in Low Density Lipoprotein Oxidation and Antioxidant Status, Free Radic. Res., 1997, vol. 27, no. 1, pp. 89-96.

    Google Scholar 

  35. Sokolovskii, V.V., Thiole Antioxidants in Molecular Mechanisms of the Nonspecific Response of the Organism to Extreme Factors: A Review, Vopr. Med. Khim., 1988, vol. 34, no. 6, pp. 2-11.

    Google Scholar 

  36. Stoneking, M., Fontius, J.J., Clifford, S.L., et al., Alu Insertion Polymorphisms and Human Evolution: Evidence for a Larger Population Size in Africa, Genome Res., 1997, vol. 7, no. 11, pp. 1061-1071.

    Google Scholar 

  37. Foy, C.A., McCormack, L.J., Knowler, W.C., et al., The Angiotensin I-Converting Enzyme (ACE) Gene I/D Polymorphism and ACE Levels in Pima Indians, J. Med. Genet., 1996, vol. 33, no. 4, pp. 336-337.

    Google Scholar 

  38. Miloserdova, O.V., Slominsky, P.A., Mauyanov, I.V., et al., Association between the Insertion/Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Angiopathies in Patients with Insulin-Independent Diabetes Mellitus from the Chuvash Republic, Genetika (Moscow), 2001, vol. 37, no. 1, pp. 112-116.

    Google Scholar 

  39. Dolgikh, M.M., Voevoda, M.I., Malyutina, S.K., et al., Population Frequencies and Age-Dependent Dynamics of Genotypes and Alleles of the Angiotensin-Converting Enzyme Gene in the Novosibirsk Population, Bioraznoobrazie i dinamika ekosistem Severnoi Evrazii: informatsionnye tekhnologii i modelirovanie: Tezisy dokladov I mezhdunarodnogo rabochego soveshchaniya (Biodiversity and Dynamics of North Eurasian Ecosystems: Information Technologies and Modeling: Proc. I Int. Workshop, Novosibirsk, 2001, p. 108.

  40. Lee, P.L., Ho, N.J., Olson, R., and Beutler, E., The Effect of Transferrin Polymorphisms on Iron Metabolism, Blood Cells Mol. Dis., 1999, vol. 25, nos. 5-6, pp. 374-379.

    Google Scholar 

  41. Blanche, H., Cabanne, L., Sahbatou, M., and Thomas, G., A Study of French Centenarians: Are ACE and APOE Associated with Longevity?, C. R. Acad. Sci. III, 2001, vol. 324, no. 2, pp. 129-135.

    Google Scholar 

  42. Rossi, G.P., Taddei, S., Virdis, A., et al., Exclusion of the ACE I/D Polymorphism as a Determinant of Endothelial Dysfunction, Hypertension (Dallas), 2001, vol. 37, no. 2, pp. 293-300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marussin, A.V., Puzyrev, V.P., Salyukov, V.B. et al. Correlation between Polymorphism of the Genes for Transferrin and Angiotensin-Converting Enzyme and Antioxidant Activity of Blood Plasma. Russian Journal of Genetics 39, 700–705 (2003). https://doi.org/10.1023/A:1024422330142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024422330142

Keywords

Navigation