Skip to main content
Log in

Load-increasing fatigue test to characterize the interface of composites under fatigue loadings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of glass-fiber epoxy interface in cross-ply reinforced composites on the fatigue behavior is studied by using load-increasing fatigue test. The damage as measured by stiffness reduction is more significant for the composites with poor bonded fibers as was found for EP sized ones, dependent on test conditions. Energy loss is shown to be a sensitive tool to characterize the nature of fiber matrix adhesion. The energy loss for composites with poor adhesion between fiber and matrix results in significantly higher amounts of consumed energy during a single stress-strain loop than those composites containing well-bonded fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Subramanian, K. L. Reifsnider and W. W. Stinchcomb, Intern. J. Fatigue 17 (1995) 343.

    Google Scholar 

  2. B. N. Cox and D. B. Marshall, Fatigue and Fracture of Engineering Materials and Structures 14 (1991) 847.

    Google Scholar 

  3. V. Ramakrishnan and N. N. Jayaraman, J. Mater. Sci. 28 (1993) 5592.

    Google Scholar 

  4. G. Bao and Y. Song, Journal of Mechanics and Physics of Solids 41 (1993) 1425.

    Google Scholar 

  5. G. M. Newaz and N. Bonora “Damage Based Fatigue Life Modeling For Brittle Composites” (ICCM-11, Gold Coast, Australia, July 14–18, 1997).

    Google Scholar 

  6. A. Poursartip, M. F. Ashby and P. W. R. Beaumont, Comp. Sci. & Techn. 25 (1986) 193.

    Google Scholar 

  7. M. O. W. Richardson, C. M. Branco and J. A. M. Ferreira, J. Comp. Mater. 31(18) (1997) 1826.

    Google Scholar 

  8. J. F. Mandell and U. Meier, “in Long-Term Behavior of Composites,” edited by T. K. O'Brien (ASTM STP 813, ASTM PA, 1983).

  9. D. Kujawski and F. Ellyin, Composites 26(10) (1995) 719.

    Google Scholar 

  10. H. El Kadi and F. Ellyin, Composites 25(10) (1994) 917.

    Google Scholar 

  11. V. Pavsek, J. Wolfrum and G. W. Ehrenstein, GAK 51(4) (1998) 346.

    Google Scholar 

  12. F. Orth, L. Hoffmann, H. Zilch-Bremer and G. W. Ehrenstein, Composite Structures 24 (1993) 265.

    Google Scholar 

  13. B. von Bernstorff and G. W. Ehrenstein, J. Mater. Sci. 25 (1990) 4087.

    Google Scholar 

  14. TH. Zysk, W. Janzen and G. W. Ehrenstein, “Stress and Strain Limits of Glass Fiber Reinforced PBTP and SAN, 46th Annual SPI-Conference” (Washington D.C., February 18–21, 1991).

  15. J. Gassan and A. K. Bledzki, Polymer Composites 18(2) (1997) 179.

    Google Scholar 

  16. J. Gassan, “Natural Fiber Reinforced Plastics–Correlation Between Structure and Properties of the Fibers and its Composites,” Dissertation at the University of Kassel, Kassel, 1997.

  17. J. Gassan and A. K. Bledzki, Composites 28A (1997) 1001.

    Google Scholar 

  18. J. Gassan and A. K. Bledzki, Comp. Sci. & Techn. 59 (1999) 1303.

    Google Scholar 

  19. J. Gassan and A. K. Bledzki, Polymer Composites 20(4) (1999) 604.

    Google Scholar 

  20. J. Gassan, Composite Interfaces 7(4) (2000) 287.

    Google Scholar 

  21. R. Talreja, J. Comp. Technol. & Res. 7 (1985) 25.

    Google Scholar 

  22. S. L. Ogin, P. A. Smith and P. W. R. Beaumont, Comp. Sci. Technol. 22 (1985) 23.

    Google Scholar 

  23. K. L. Reifsnider, K. Schulte and J. C. Duke, in “Long-Term Behavior of Composites,” edited by T. K. O'Brien (ASTM STP 813, ASTM PA, 1983) p. 136.

  24. S. Subramanian, J. S. Elmore, W. W. Stinchcomb and K. L. Reifsnider, in “Composite Materials: Testing and Design Vol. 12,” edited by R. B. Deo and C. R. Saff (ASTM STP 1274, ASTM PA, 1995) p. 69.

  25. M. van den Oever and T. Peijs, Composites Part A 29A (1998) 227.

    Google Scholar 

  26. A. W. Pryce and P. A. Smith, J. Mater. Sci. 27 (1992) 2695.

    Google Scholar 

  27. D. P. Walls, J. C. MCC Nulty and F. W. Zok, Metallurgica and Materials Transactions 27A (1996) 1899.

    Google Scholar 

  28. P. W. R. Beaumont, J. Adhesion 6 (1974) 107.

    Google Scholar 

  29. P. W. R. Beaumont and J. M. Schultz, in “Failure Analysis of Composite Materials–Delaware Composite Design Encyclopedia,” edited by P. W. R. Beaumont et al (Technomic Publishing Co., Inc., Lancaster, 1990).

    Google Scholar 

  30. F. W. Zok and S. M. Spearing, Acta Metall. Mater. 40(8) (1992) 2033.

    Google Scholar 

  31. G. Caprino and G. Giorleo, Composites 30A (1999) 299.

    Google Scholar 

  32. A. Conle and J. P. Ingall, Journal of Composites Technology & Research 7(1) (1985) 3.

    Google Scholar 

  33. J. N. Yang and D. L. Jones, in “Long-Term Behavior of Composites,” edited by T. K. O'Brien (ASTM STP 813, ASTM PA, 1983) p. 246.

  34. W. W. Stinchcomb, K. L. Reifsnider and R. S. Williams, Experimental Mechanics 16 (1976) 343.

    Google Scholar 

  35. J. E. Masters and K. L. Reifsnider, in “Damage in Composite Materials,” edited by K. L. Reifsnider (ASTM STP 775, ASTM PA, 1982) p. 40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassan, J., Dietz, T. Load-increasing fatigue test to characterize the interface of composites under fatigue loadings. Journal of Materials Science 38, 2755–2760 (2003). https://doi.org/10.1023/A:1024415525739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024415525739

Keywords

Navigation