Landscape Ecology

, Volume 18, Issue 3, pp 333–346 | Cite as

Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity

  • Jean-François ArnaudEmail author


The spatial genetic structuring of the land snail Helix aspersa was investigated for 32 colonies within an intensive agricultural area, the polders of the Bay of Mont-Saint-Michel (France). Given the habitat patchiness and environmental instability, the setting of H. aspersa colonies meets the broader view of a metapopulation structure. The identification of extrinsic barriers to migration and their impact on the genetic distribution was addressed through the genotyping of 580 individuals using a combined set of enzyme and microsatellite loci. To evaluate the distance as well as the direction over which the spatial genetic arrangement occurs, two-dimensional spatial autocorrelation analyses, Mantel tests of association and multivariate Mantel correlograms were used. Different connectivity networks and geographical distances based on landscape features were constructed to evaluate the effect of environmental heterogeneity and to test the adequacy of an isolation by distance model on the distribution of the genetic variability. Genetic divergence was assessed using either classical IAM-based statistics, or SMM-based genetic distances specifically designed to accommodate the mutational processes thought to fit microsatellite evolution (IAM: Infinite Allele Model; SMM: Stepwise Mutation Model). Genetic distances based only on genetic drift yielded the most plausible biologically meaningful interpretation of the observed spatial structure. Applying a landscape-based geographical distance which postulates that migration arises along roadside verges, hedges or irrigation canal embankments gave a better fit to an isolation by distance model than did a simple Euclidean distance. The progressive decline of genetic similarity with physical distance appeared to be environmentally induced, leading to functional migration pathways.

allozyme genetic structure habitat configuration landscape connectivity land snail metapopulation microsatellite spatial autocorrelation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaud, J.-F. 2000. Organisation spatiale de la variabilité génétique dans une métapopulation de l’escargot terrestre Helix aspersa (Gastropoda: Pulmonata). PhD Thesis, University of Rennes 1, France. 157 pp.Google Scholar
  2. Arnaud, J.-F., Madec, L. and Daguzan, J. 1999a. Spatial differentiation of allozyme frequencies in a subdivided population of the land snail Helix aspersa. Journal of Molluscan Studies 65: 267–271.Google Scholar
  3. Arnaud, J.-F., Madec, L., Bellido, A. and Guiller, A. 1999b. Microspatial genetic structure in the land snail Helix aspersa (Gastropoda: Helicidae). Heredity 83: 110–119.PubMedGoogle Scholar
  4. Arnaud, J.-F., Madec, L., Guiller, A. and Bellido, A. 2001. Spatial analysis of allozyme and microsatellite DNA polymorphisms in the land snail Helix aspersa (Gastropoda: Helicidae). Molecular Ecology 10: 1563–1576.PubMedGoogle Scholar
  5. Arter, H.E. 1990. Spatial relationship and gene flow paths between populations of the alpine snail Arianta arbustorum (Pulmonata: Helicidae). Evolution 44: 966–980.Google Scholar
  6. Bahl, A., Pfenninger, M., Bamberger, H., Frye, M. and Streit, B. 1996. Survival of snails in fragmented landscapes. In: Species Survival in Fragmented Landscapes, pp. 329–343. J. Settele, C.R. Margules, P. Poschlod and K. Henle (eds). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  7. Barbujani, G. 1987. Autocorrelation of gene frequencies under isolation by distance. Genetics 117: 777–782.PubMedGoogle Scholar
  8. Baur, A. and Baur, B. 1992. Effect of corridor width on animal dispersal: a simulation study. Global Ecology and Biogeography 2: 52–56.Google Scholar
  9. Baur, A. and Baur, B. 1993. Daily movement patterns and dispersal in the land snail Arianta arbustorum. Malacologia 35: 89–98.Google Scholar
  10. Baur, B. 1993. Population structure, density, dispersal and neighbourhood size in Arianta arbustorum (Linnaeus, 1758) (Pulmonata: Helicidae). Annalen des Naturhistorischen Museums Wien 94/95B: 307–321.Google Scholar
  11. Bohonak, A.J. 1999. Dispersal, gene flow, and population structure. Quarterly Review of Biology 74: 21–45.PubMedGoogle Scholar
  12. Castric, V., Bonney, F. and Bernatchez, L. 2001. Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis. Evolution 55: 1016–1028.PubMedGoogle Scholar
  13. Cavalli-Sforza, L.L. and Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics 19: 233–257.PubMedGoogle Scholar
  14. Davison, A. and Clarke, B. 2000. History or current selection? A molecular analysis of ‘area effects’ in the land snail Cepaea nemoralis. Proc. Roy. Soc. London B 267: 1399–1405.Google Scholar
  15. Estoup, A. and Cornuet, J.-M. 1999. Microsatellite evolution: inferences from population data. In: Microsatellites: Evolution and Applications, pp. 49–65. D.B. Goldstein and C. Schlötterer (eds). Oxford University Press, Oxford, UK.Google Scholar
  16. Gabriel, K.R. and Sokal, R.R. 1969. A new statistical approach to geographic variation analysis. Systematic Zoology 18: 259–278.Google Scholar
  17. Goodman, S.J. 1997. RSTCALC: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Molecular Ecology 6: 881–885.Google Scholar
  18. Goudet, J. 1995. FSTAT (Version 1.2). A computer program to calculate F-Statistics. Journal of Heredity 86: 485–486.Google Scholar
  19. Guiller, A., Madec, L. and Daguzan, J. 1994. Geographical patterns of genetic differentiation in the land snail Helix aspersa Müller (Gastropoda: Pulmonata). Journal of Molluscan Studies 60: 205–221.Google Scholar
  20. Guiller, A., Arnaud, J.-F., Vautrin, D. and Solignac, M. 2000. Highly polymorphic microsatellite markers in the land snail Helix aspersa (Mollusca: Gastropoda). Molecular Ecology 9: 1191–1193.PubMedGoogle Scholar
  21. Hanski, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford, UK.Google Scholar
  22. Harrison, S. and Taylor, A.D. 1997. Empirical evidence for metapopulation dynamics. In: Metapopulation Biology: Ecology, Genetics, and Evolution, pp. 27–42. I. Hanski and M.E. Gilpin (eds). Academic Press, San Diego, California, USA.Google Scholar
  23. Hutchison, D.W. and Templeton, A.R. 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898–1914.Google Scholar
  24. Ingvarsson, P.K., Olsson, K. and Ericson, L. 1997. Extinction-recolonization dynamics in the mycophagous beetle Phalacrus substriatus. Evolution 51: 187–195.Google Scholar
  25. Keyghobadi, N., Roland, J. and Strobeck, C. 1999. Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Molecular Ecology 8: 1481–1495.PubMedGoogle Scholar
  26. Lugon-Moulin, N., Brünner, H., Wyttenbach, A., Hausser, J. and Goudet, J. 1999. Hierarchical analyses of genetic differentiation in a hybrid zone of Sorex araneus (Insectivora: Soricidae). Molecular Ecology 8: 419–431.Google Scholar
  27. Madec, L., Bellido, A. and Guiller, A. 1996. Statistical and biogeographical significance of patterns of morphological and biochemical variation in the land snail Helix aspersa. Comptes Rendus de l’Académie des Sciences Paris (III) 319: 225–229.Google Scholar
  28. Madec, L., Desbuquois, C. and Coutellec-Vreto, M.-A. 2000. Phenotypic plasticity in reproductive traits: importance in the life history of Helix aspersa (Mollusca: Helicidae) in a recently colonized habitat. Biological Journal of Linnean Society 69: 25–39.Google Scholar
  29. McCauley, D.E. 1995. Effects of population dynamics on genetics in mosaic landscapes. In: Mosaic Landscapes and Ecological Processes, pp. 178–198. L. Hansson, L. Fahrig and G. Merriam (eds). Chapman & Hall, London, UK.Google Scholar
  30. Michels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P. and De Meester, L. 2001. Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology 10: 1929–1938.PubMedGoogle Scholar
  31. Oden, N.L. 1984. Assessing the significance of a spatial correlogram. Geographical Analysis 16: 1–16.Google Scholar
  32. Oden, N.L. and Sokal, R.R. 1986. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Systematic Zoology 35: 608–617.Google Scholar
  33. Paillat, G. and Butet, A. 1996. Spatial dynamics of the bank vole (Clethrionomys glareolus) in a fragmented landscape. Acta Oecologica 17: 553–559.Google Scholar
  34. Pannell, J.R. and Charlesworth, B. 2000. Effects of metapopulation processes on measures of genetic diversity. Philantropical Transmission Royal Society London B 355: 1851–1864.Google Scholar
  35. Rogers, J.S. 1972. Measures of genetic similarity and genetic distance. In: Studies in Genetics VII, pp. 145–153. University of Texas, Publication 7213, Austin, Texas, USA.Google Scholar
  36. Rosenberg, M.S. 2000. The bearing correlogram: a new method of analyzing directional spatial autocorrelation. Geographical Analysis 32: 267–278.Google Scholar
  37. Rosenberg, M.S. 2001. PASSAGE: pattern analysis, spatial statistics, and geographic exegesis, Version 1.0. Department of Biology, Arizona State University, Tempe, Arizona, USA.Google Scholar
  38. Rosenberg, M.S., Sokal, R.R., Oden, N.L. and DiGiovanni, D. 1999. Spatial autocorrelation of cancer in Western Europe. European Journal of Epidemiology 15: 15–22.PubMedGoogle Scholar
  39. Rousset, F. 2001. Genetic approaches to the estimation of dispersal rates. In: Dispersal, pp. 18–28. J. Clobert, E. Danchin, A.A. Dhondt and J.D. Nichols (eds). Oxford University Press, Oxford, UK.Google Scholar
  40. Rowe, G., Beebee, T.J.C. and Burke, T. 2000. A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88: 641–651.Google Scholar
  41. Schlötterer, C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109: 365–371.PubMedGoogle Scholar
  42. Shriver, M.D., Jin, L., Boerwinkle, E., Deka, R., Ferrell, R.E. and Chakraborty, R. 1995. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Molecular Biology and Evolution 12: 914–920.PubMedGoogle Scholar
  43. Slatkin, M. 1994. Gene flow and population structure. In: Ecological Genetics, pp. 3–17. L. A. Real (eds). Princeton University Press, Princeton, New York, USA.Google Scholar
  44. Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.PubMedGoogle Scholar
  45. Smouse, P.E., Long, J.C. and Sokal, R.R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35: 627–632.Google Scholar
  46. Sokal, R.R. 1979. Testing statistical significance of geographic variation patterns. Systematic Zoology 28: 227–232.Google Scholar
  47. Sokal, R.R. and Oden, N.L. 1978. Spatial autocorrelation in biology 1. Methodology. Biological Journal of Linnean Society 10: 199–228.Google Scholar
  48. Sokal, R.R. and Thomson, B.A. 1998. Spatial genetic structure of human populations in Japan. Human Biology 70: 1–22.Google Scholar
  49. Sokal, R.R., Oden, N.L. and Barker, J.S.F. 1987. Spatial structure in: Drosophila buzzatii populations: simple and directional spatial autocorrelation. American Naturalist 129: 122–142.Google Scholar
  50. Sokal, R.R., Smouse, P.E. and Neel, J.V. 1986. The genetic structure of a tribal population, the Yanomama Indians. XV. Patterns inferred by autocorrelation analysis. Genetics 114: 259–287.PubMedGoogle Scholar
  51. Sork, V.L., Nason, J., Campbell, D.R. and Fernandez, J.F. 1999. Landscape approaches to historical and contemporary gene flow in plants. Trends in Ecology and Evolution 14: 219–224.PubMedGoogle Scholar
  52. Takezaki, N. and Nei, M. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144: 389–399.PubMedGoogle Scholar
  53. Vendramin, G.G., Degen, B., Petit, R.J., Anzidei, M., Madaghiele, A. and Ziegenhagen, B. 1999. High level of variation at Abies alba chloroplast microsatellite loci in Europe. Molecular Ecology 8: 1117–1126.PubMedGoogle Scholar
  54. Viard, F., Justy, F. and Jarne, P. 1997. Population dynamics inferred from temporal variation at microsatellite loci in the selfing snail Bulinus truncatus. Genetics 146: 973–982.PubMedGoogle Scholar
  55. Vos, C.C., Antonisse-De Jong, A.G., Goedhart, P.W. and Smulders, M.J.M. 2001. Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86: 598–608.PubMedGoogle Scholar
  56. Weir, B.S. and Cockerham, C.C. 1984. Estimating F-Statistics for the analysis of population structure. Evolution 38: 1358–1370.Google Scholar
  57. Wiens, J.A. 2001. The landscape context of dispersal. In: Dispersal, pp. 96–109. J. Clobert, E. Danchin, A. A. Dhondt and J. D. Nichols (eds). Oxford University Press, Oxford, UK.Google Scholar
  58. Wright, S. 1942. Isolation by distance. Genetics 28: 114–138.Google Scholar
  59. Zhivotovsky, L.A. 1999. A new genetic distance with application to constrained variation at microsatellite loci. Molecular Biology Evolution 16: 467–471.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.UMR CNRS 8016 Laboratoire de Génétique et Evolution des Populations Végétales, Bât. SN2Université de Lille 1Villeneuve d’Ascq cedexFrance
  2. 2.UMR CNRS 6553, Equipe Evolution des Populations et des EspécesUniversité de Rennes 1Rennes cedexFrance

Personalised recommendations