Skip to main content
Log in

Effects of patch attributes, barriers, and distance between patches on the distribution of a rock-dwelling rodent (Lagidium viscacia)

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We tested whether size of habitat patches and distance between patches are sufficient to predict the distribution of the mountain vizcacha Lagidium viscacia a large, rock-dwelling rodent of the Patagonian steppe Argentina, or whether information on other patch and landscape characteristics also is required. A logistic regression model including the distance between rock crevices and depth of crevices, distance between a patch and the nearest occupied patch, and whether or not there was a river separating it from the nearest occupied patch was a better predictor of patch occupancy by mountain vizcachas than was a model based only on patch size and distance between patches. Our results indicate that a simple metapopulation analysis based on size of habitat patches and distance between patches may not provide an accurate representation of regional population dynamics if patches vary in habitat quality independently of patch size and features in the matrix alter connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  • van Apeldoorn R.C., Celada C. and Nieuwenhuizen W. 1994. Dis-tribution and dynamics of the red squirrel (Sciurus vulgaris L.) in a landscape with fragmented habitat. Landscape Ecology 9: 227–235.

    Article  Google Scholar 

  • Arnold G.W., Weeldenburg J.R. and Ng V.M. 1995. Factors affecting the distribution and abundance of Western grey kangaroos (Macropus fuliginosus) and euros (M. robustus) in a fragmented landscape. Landscape Ecology 10: 65–74.

    Article  Google Scholar 

  • Fleishman E., Ray C., Sjögren-Gulve P., Boggs C.L. and Murphy D.D. 2002. Assessing the roles of patch quality, area, and iso-lation in predicting metapopulation dynamics. Conservation Biology 16: 706–716.

    Article  Google Scholar 

  • Galende G.I. and Grigera D. 1998. Relaciones alimentárias de La-gidium viscacia (Rodentia, Chinchillidae) con herbívoros intro-ducidos en el Parque Nacional Nahuel Huapi, Argentina. Iheringia, Séria Zoologica, Porto Alegre 84: 3–10.

    Google Scholar 

  • Galende G.I., Grigera D. and von Thüngen J. 1998. Composición de la dieta del chinchillón (Lagidium viscacia, Chinchillidae) en el noroeste de la Patagonia. Mastozoología Neotropical 5: 123–128.

    Google Scholar 

  • Hanski I. 1994. A practical model of metapopulation dynamics. Journal of Animal Ecology 63: 151–162.

    Article  Google Scholar 

  • Hanski I., Pakkala T., Kuussaari M. and Lei G. 1995. Metapopula-tion persistence of an endangered butterfly in a fragmented landscape. Oikos 72: 21–28.

    Google Scholar 

  • Hill J.K., Thomas C.D. and Lewis O.T. 1996. Effects of habitat patch size and isolation on dispersal by Hesperia comma but-terflies: implications for metapopulation structure. Journal of Animal Ecology 65: 725–735.

    Article  Google Scholar 

  • Hokit D.G., Stith B.M. and Branch L.C. 1999. Effects of landscape structure in Florida scrub: a population perspective. Ecological Applications 9: 124–134.

    Article  Google Scholar 

  • Hokit D.G., Stith B.M. and Branch L.C. 2001. Comparison of two types of metapopulation models in real and artificial landscapes. Conservation Biology 15: 1102–1113.

    Article  Google Scholar 

  • Hosmer D.W. and Lemeshow S. 1989. Applied Logistic Regression. John Wiley and Sons, New York, New York, USA.

    Google Scholar 

  • Jiménez J.E. 1995. Conservation of the last wild chinchilla (Chin-chilla lanigera) archipelago: a metapopulation approach. Vida Silvestre Neotropical 4: 89–97.

    Google Scholar 

  • Jonsen I.D., Bourchier R.S. and Roland J. 2001. The influence of matrix habitat on Aphthona flea beetle immigration to leafy spurge patches. Oecologia 127: 287–294.

    Article  Google Scholar 

  • Keyghobadi N., Roland J. and Strobeck C. 1999. Influence of landscape on the population genetic structure of the alpine butterfly Parnassus smintheus (Papilionidae). Molecular Ecology 8: 1481–1495.

    Article  PubMed  Google Scholar 

  • Kindvall O. 1996. Habitat heterogeneity and survival in a bush-cricket metapopulation. Ecology 77: 207–214.

    Article  Google Scholar 

  • King P.S. 1987. Macro-and microgeographic structure of a spa-tially subdivided beetle species in nature. Evolution 41: 401–416.

    Article  Google Scholar 

  • León R.J.C., Bran D., Collantes M., Paruelo J.M. and Soriano A. 1998. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8: 125–144.

    Google Scholar 

  • Mazerolle M.J. and Villard M.-A. 1999. Patch characteristics and landscape context as predictors of species presence and abun-dance: a review. Ecoscience 6: 117–124.

    Google Scholar 

  • Micol T., Doncaster C.P. and Mackinlay L.A. 1994. Correlates of local variation in the abundance of hedgehogs Erinaceus euro-paeus. Journal of Animal Ecology 63: 851–860.

    Article  Google Scholar 

  • Moilanen A. and Hanski I. 1998. Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79: 2503–2515.

    Article  Google Scholar 

  • Moilanen A., Smith A.T. and Hanski I. 1998. Long-term dynamics in a metapopulation of the American pika. The American Naturalist 152: 530–542.

    Article  PubMed  CAS  Google Scholar 

  • Nagelkerke N.J.D. 1991. A note on a general definition of the coefficient of determination. Biometrika 78: 691–692.

    Article  Google Scholar 

  • Pearson O. 1948. Life history of mountain viscachas in Peru. Journal of Mammalogy 29: 345–374.

    Article  Google Scholar 

  • Petit S. and Burel F. 1998. Connectivity in fragmented populations: Abax parallelepipedus in a hedgerow network landscape. Comptes-Rendus de l'Académie des Sciences, Paris, Sciences de la vie 321: 55–61.

    Article  Google Scholar 

  • Puig S., Videla F., Cona M., Monge S. and Roig V. 1998. Diet of the mountain vizcacha (Lagidium viscacia Molina 1782) and food availability in northern Patagonia, Argentina. Zeitschrift für Säugetierkunde 63: 228–238.

    Google Scholar 

  • Redford K. and Eisenberg J.F. 1992. Mammals of the Neotropics: The Southern Cone. Vol. 2. University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Ricketts T.H. 2001. The matrix matters: effective isolation in fragmented landscapes. The American Naturalist 158: 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Roberts D.W. 1986. Ordination on the basis of fuzzy set theory. Vegetation 66: 123–131.

    Article  Google Scholar 

  • Roland J., Keyghobadi N. and Fownes S. 2000. Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81: 1642–1653.

    Article  Google Scholar 

  • Sinclair A.R.E., Krebs C.J. and Smith J.N.M. 1982. Diet quality and food limitation in herbivores: the case of the snowshoe hare. Canadian Journal of Zoology 60: 889–897.

    Article  Google Scholar 

  • Sjögren-Gulve P. and Ray C. 1996. Using logistic regression to model metapopulation dynamics: Large-scale forestry extir-pates the pool frog. In: McCullough D.R. (ed.), Metapopula-tions and Wildlife Conservation. Island Press, Washington, DC, USA, pp. 111–138.

    Google Scholar 

  • SPSS Inc. 1999. SPSS Base 10.0 Applications Guide. SPSS Inc., Chicago, Illinois, USA.

  • Stith B.S., Fitzpatrick J.W., Woolfenden G.E. and Pranty B. 1996. Classification and conservation of metapopulations: a case study of the Florida scrub jay. In: McCullough D.R. (ed.), Me-tapopulations and Wildlife Conservation. Island Press, Wash-ington, DC, USA, pp. 187–216.

    Google Scholar 

  • Vos C.C., Antonisse-de Jong A.G., Goedhart P.W. and Smulders M.J.M. 2001. Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arva-lis). Heredity 86: 598–608.

    Article  PubMed  CAS  Google Scholar 

  • Walker R.S. 2001. Effects of Landscape Structure on the Distribu-tion of Mountain vizcacha (Lagidium viscacia) in the Patago-nian Steppe. PhD Thesis, University of Florida, Gainesville, Florida, USA, 100 pp.

    Google Scholar 

  • Walker R.S., Ackermann G., Schachter-Broide J., Pancotto V. and Novaro A.J. 2000. Habitat use by mountain vizcachas (Lagid-ium viscacia Molina, 1782) in the Patagonian steppe. Zeitschrift für Säugetierkunde 65: 293–300.

    Google Scholar 

  • Wiens J.A. 1997. Metapopulation dynamics and landscape ecology. In: Hanski I. and Gilpin M.E. (eds), Metapopulation Biology: Ecology, Genetics and Evolution. Academic Press, San Diego, California, USA, pp. 43–68.

    Google Scholar 

  • Wilcox B.A. 1980. Insular ecology and conservation. In: Soule M.E. and Wilcox B.A. (eds), Conservation Biology: An Evolu-tionary-Ecological Perspective. Sinauer Assoc., Inc., Sunderland, Massachusetts, USA, pp. 95–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, R.S., Novaro, A.J. & Branch, L.C. Effects of patch attributes, barriers, and distance between patches on the distribution of a rock-dwelling rodent (Lagidium viscacia). Landscape Ecology 18, 185–192 (2003). https://doi.org/10.1023/A:1024408400263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024408400263