Skip to main content
Log in

X-linked creatine transporter defect: An overview

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Summary: In 2001 we identified a new inborn error of metabolism caused by a defect in the X-linked creatine transporter SLC6A8 gene mapped at Xq28 (SLC6A8 deficiency, McKusick 300352). An X-linked creatine transporter defect was presumed because of (1) the absence of creatine in the brain as indicated by proton magnetic resonance spectroscopy (MRS); (2) the elevated creatine levels in urine and normal guanidinoacetate levels in plasma, ruling out a creatine biosynthesis defect; (3) the absence of an improvement on creatine supplementation; and (4) the fact that the pedigree suggested an X-linked disease. Our hypothesis was proved by the presence of a hemizygous nonsense mutation in the male index patient and by the impaired creatine uptake by cultured fibroblasts. Currently, at least 7 unrelated families (13 male patients and 13 carriers) with a SLC6A8 deficiency have been identified. Four families come fromone metropolitan area. This suggests that SLC6A8 deficiency may have a relatively high incidence. The hallmarks of the disorder are X-linked mental retardation, expressive speech and language delay, epilepsy, developmental delay and autistic behaviour. In approximately 50% of the female carriers, learning disabilities of varying degrees have been noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bizzi A, Bugiani M, Salomons GS, et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52: 227-231.

    Article  PubMed  CAS  Google Scholar 

  • Cecil KM, Salomons GS, Ball WS, et al (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49: 401-404.

    Article  PubMed  CAS  Google Scholar 

  • Cecil KM, DeGrauw TJ, Salomons GS, Jakobs C, Egelhoff JC, Clark JF (2003) Magnetic resonance spectroscopy in a 9-day-old heterozygous female child with creatine transporter deficiency. J Comput Assist Tomogr 27: 44-47.

    Article  PubMed  Google Scholar 

  • deGrauw TJ, Salomons GS, Cecil KM, et al (2002) Congenital creatine transporter deficiency. Neuropediatrics 33: 232-238.

    Article  PubMed  CAS  Google Scholar 

  • deGrauw TJ, Cecil KM, Byars AW, Ball WS, Jakobs C (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244: 45-48.

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE, Lu F, Shen Y (1996) Duplication of a gene-rich cluster between 16pl 1.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5: 899-912.

    Article  PubMed  CAS  Google Scholar 

  • Gregor P, Nash SR, Caron MG, Seldin MF, Warren ST (1995) Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD. Genomics 25: 332-333.

    Article  PubMed  CAS  Google Scholar 

  • Grunau C, Hindermann W, Rosenthal A (2000) Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Hum Mol Genet 9: 2651-2663.

    Article  PubMed  CAS  Google Scholar 

  • Hahn KA, Salomons GS, Tackels-Horne D (2002) X-linked mental retardation with seizure and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70: 1349-1356.

    Article  PubMed  CAS  Google Scholar 

  • Item CB, St6ckler-Ipsiroglu S, Stromberger C, et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69: 1127-1133.

    Article  PubMed  CAS  Google Scholar 

  • Nash SR, Giros B, Kingsmore SF (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2: 165-174.

    PubMed  CAS  Google Scholar 

  • Salomons GS, Dooren JM, Verhoeven NM, et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine deficiency sydrome. Am J Hum Genet 68: 1497-1500.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval N, Bauer D, Brenner V (1996) The genomic organization of a human creatine trans-porter (CRTR) gene located in Xq28. Genomics 35: 383-385.

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Hess T, Wevers R (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 131: 626-631.

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Richman J, Santoro G (1994) The cloning and expression of a human creatine trans-porter. Biochem Biophys Res Commun 204: 419-427.

    Article  PubMed  CAS  Google Scholar 

  • St6ckler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996a) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58: 914-922.

    Google Scholar 

  • St6ckler S, Hanefeld F, Frahm J (1996b) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348: 789-790.

    Article  Google Scholar 

  • St6ckler S, Marescau B, De Deyn PP, Trijbels JM, Hanefeld F (1997) Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism 46: 1189-1193.

    Article  Google Scholar 

  • Stromberger C, Bodamer OA, St6ckler-Ipsiroglu S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26: 299-308.

    Article  PubMed  CAS  Google Scholar 

  • Struys EA, Jansen EE, ten Brink HJ, Verhoeven NM, van der Knaap MS, Jakobs C (1998) An accurate stable isotope dilution gas chromatographic mass spectrometric approach to the diagnosis of guanidinoacetate methyltransferase deficiency. J Pharm Biomed Anal 18: 659-665.

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Beal MF (2001) Potential for creatine and other therapies targetting cellular energy dysfunction in neurological disorders. Ann Neurol 49: 561-574.

    Article  PubMed  CAS  Google Scholar 

  • van der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P, et al (2000) Mental retardation and behavioral problems as presenting signs of creatine synthesis defect. Ann Neurol 47: 540-543.

    Article  PubMed  CAS  Google Scholar 

  • Walker JB (1979) Creatine: biosynthesis, regulation and function. Adv Enzymol Relat Areas Mol Biol 50: 177-242.

    PubMed  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80: 1107-1213.

    PubMed  CAS  Google Scholar 

  • Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112: 243-260.

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Liu L, Gorman PA, Sheer D, Emson PC (1997) Assignment of the human creatine transporter type 2 (SLC6A10) to chromosome band 16p11.2 by in situ hybridization. Cytogenet Cell Genet 76: 19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Salomons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomons, G.S., Van Dooren, S.J.M., Verhoeven, N.M. et al. X-linked creatine transporter defect: An overview. J Inherit Metab Dis 26, 309–318 (2003). https://doi.org/10.1023/A:1024405821638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024405821638

Keywords

Navigation