Skip to main content
Log in

NMR Study of Non-freezing Water in Protein-Modified Carbon Adsorbents

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Temperature dependences of 1H NMR spin–spin relaxation were studied for the non-freezing water at the surface of carbon matrices modified with proteins (human serum albumin (HSA) and mouse immunoglobulin (MIG)) in the presence of water-soluble carbodiimide. The entropy, ΔS , and enthalpy, ΔH , values characterizing molecular mobility in non-freezing water were estimated. The compensation effect was observed for all modified samples, which is well approximated by the linear dependence of the type ΔH = T 0ΔS + ΔH 0. The compensation temperature T 0 = 231 ± 33 corresponds to such a state of non-freezing water, when the effect of modifying additives on the isobaric potential of molecular mobility activation in the non-freezing water, ΔG , is minimal. The ΔG has approximately constant value equal to ΔH 0 = 24.2 ± 0.5 kJ/mol. Modification of the base carbon matrix with MIG protein results in higher structurization of the non-freezing water, whereas HSA reduces this structurization. The observed effects are explained in terms of the hydration of modifying agents and also by the peculiarities of their location on the surface of carbon adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Antonchenko, V.Ya., Davydov, A.S., and Il'in, V.V., Osnovy fiziki vody (Fundamentals of Water Physics), Kiev: Naukova Dumka, 1991.

    Google Scholar 

  2. Mank, V.V. and Lebovka, N.I., Spektroskopiya yadernogo magnitnogo resonansa vody v geterogennykh sistemakh (Nuclear Magnetic Resonance Spectroscopy of Water in Heterogeneous Systems), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  3. Godefroy, S., Korb, J.-P., Fleury, M., and Bryant, R.G., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 64, no. 21, p. 021605/1.

    Google Scholar 

  4. Korb, J.-P., Magn. Reson. Imaging, 2001, vol. 19, nos. 3-4, p. 363.

    Google Scholar 

  5. Godefroy, S., Korb, J.-P., Fleury, M., and Bryant, R.G., Magn. Reson. Imaging, 2001, vol. 19, nos. 3-4, p. 517.

    Google Scholar 

  6. Appolonia, L., Borgia, G.C., Bortolotti, V., et al., Magn. Reson. Imaging, 2001, vol. 19, nos. 3-4, p. 509.

    Google Scholar 

  7. Leboda, R., Turov, V.V., Tomaszewski, W., et al., Carbon, 2002, vol. 40, no. 3, p. 389.

    Google Scholar 

  8. Otting, G., Prog. Nucl. Magn. Reson. Spectrosc., 1997, vol. 31, nos. 2-3, p. 259.

    Google Scholar 

  9. Wider, G., Prog. Nucl. Magn. Reson. Spectrosc., 1998, vol. 32, no. 3, p. 193.

    Google Scholar 

  10. Zhou, H.-X., Biophys. Chem., 2001, vol. 93, nos. 2-3, p. 171.

    Google Scholar 

  11. Yasunaga, H., Shirakawa, Y., Urakawa, H., and Kajiwara, K., J. Mol. Struct., 2002, vols. 602-603, p. 399.

    Google Scholar 

  12. Schwarz, B. and Schönhoff, M., Colloids Surf. A, 2002, vols. 198-200, p. 293.

    Google Scholar 

  13. Turov, V.V. and Leboda, R., Adv. Colloid Interface Sci., 1999, vol. 79, nos. 2-3, p. 173.

    Google Scholar 

  14. Watanabe, K. and Mizoguchi, M., Cold Reg. Sci. Technol., 2002, vol. 34, no. 2, p. 103.

    Google Scholar 

  15. Hsieh, C.-H. and Wu, W.-G., Chem. Phys. Lipids, 1995, vol. 78, no. 1, p. 37.

    Google Scholar 

  16. Cornillon, P., Andrieu, J., Duplan, J.-C., and Laurent, M., J. Food Eng., 1995, vol. 25, no. 1, p. 1.

    Google Scholar 

  17. Okada, R., Matsukawa, S., and Watanabe, T., J. Mol. Struct., 2002, vols. 602-603, p. 473.

    Google Scholar 

  18. Jehng, J.-Y., Sprague, D.T., and Halperin, W.P., Magn. Reson. Imaging, 1996, vol. 14, nos. 7-8, p. 785.

    Google Scholar 

  19. Liu, W.G. and Yao, K.D., Polymer, 2001, vol. 42, no. 8, p. 3943.

    Google Scholar 

  20. Daniels, F. and Alberty, R., Physical Chemistry, London: Wiley, 1975.

    Google Scholar 

  21. Calderone, C.T. and Williams, D.H., J. Am. Chem. Soc., 2001, vol. 123, no. 26, p. 6262.

    Google Scholar 

  22. Miyabe, K., Sotoura, S., and Guiochon, G., J. Chromatogr., 2001, vol. 919, no. 2, p. 231.

    Google Scholar 

  23. Biosovmestimost' (Biocompatibility), Sevast'yanov, V.I., Ed., Moscow: VNIIMI, 1999, p. 88.

    Google Scholar 

  24. Cho, Y.K. and Baily, J.E., Biotechnol. Bioeng., 1979, vol. 21, no. 3, p. 461.

    Google Scholar 

  25. Mikhalovsky, S.V., Strelko, V.V., and Alekseeva, T.A., Biomater. Art Cells Art. Organs, 1990, vol. 18, no. 5, p. 671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseeva, T.A., Lebovka, N.I. & Mikhailovsky, S.V. NMR Study of Non-freezing Water in Protein-Modified Carbon Adsorbents. Colloid Journal 65, 275–279 (2003). https://doi.org/10.1023/A:1024286102129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024286102129

Keywords

Navigation