Skip to main content
Log in

Oxidation and Origin of Organic Matter in Surficial Eastern Mediterranean Hemipelagic Sediments

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Aerobic mineralisation of Corg in surface sedimentsof the deep (>2000 m water depth) eastern Mediterranean Sea has been quantified by analysis of detailedbox core Corg concentration versus depth profiles and the modelling environment for early diageneticproblems MEDIA. The reactive fraction comprises 60–80% of the total Corg reachingthe sediments and is largely oxidised within the surficial 10 cm. A non-reactive C orgfraction (GNR) dominates at depths >10 cm, and makes up20–40% of the total C org flux to the sediments. First-order rateconstants for decomposition of the reactive fraction calculated from theC org profiles range from 5.4 × 10-3 to8.0 × 10-3 y-1 to 8.0 × 10-3 y-1. Total mineralization rates in thesurface sediment are between 1.7 and 2.6 μmol C cm-2 y-1 and thus are typical for oligotrophic, deep-seaenvironments. The low fluxes and rapid remineralisation of C org are accompanied by210Pbexcess surface mixed layers which are only 2 cm deep, among the thinnest reported for oxygenated marine sediments.Model results indicate a mismatch between the C org profiles and O2 microprofileswhich were measured onboard ship. This can be attributed to a combination of decompression artefactsaffecting onboard measurement of the O2 profiles or the leakage ofoxygen into the core during handling on deck. Furthermore, the used Db values, based on 210Pb, may not befully appropriate; calculations with higher Db values improve the O2 fits. The surficial sedimentδ13C org values of ∼ -22‰ become less negative with increasing depth and decreasing C orgconcentrations. The major δ13C change occurs in the top 3 to 4 cm and coincides with the interval weremost of the organic carbon oxidation takes place. This indicates that the reactive fractionof organic matter, commonly assumed to be marine, has a more negative δ13C orgthan the refractory fraction, usually held to be terrestrial. Palaeoproductivity estimates calculated from thesediment data by means of literature algorithms yield low surface productivities(12–88 gC m-2 y-1), which are in good agreement with field measurements of primary productivity in otherstudies. Such values are, however, significantly lower than those indicated by recent productivitymaps of the area derived from satellite imagery (>100 gC m-2 y-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasakis, G. C. and Stanley, D. J. (1986) Uppermost sapropel, eastern Mediterranean: Paleoceanography and stagnation, Nat. Geogr. Res. 2, 179–197.

    Google Scholar 

  • Antoine, D., Morel, A., and André, J.-M. (1995) Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone scanner observations, J. Geoph. Res. 100, 16193–16209.

    Google Scholar 

  • Betzer, P. R., Showers, W. J., Laws, E. A., Winn, D., DiTullio, G. R. and Kroopnick, P. M. (1984) Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean, Deep Sea Res 31, 1–11.

    Google Scholar 

  • Boudreau, B. P. (1986) Mathematics of tracer mixing in sediments: I. Spatialy dependent, diffusive mixing, Am. J. Sci. 286, 161–198.

    Google Scholar 

  • Boudreau, B. P. (1994) Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Acta 58, 1243–1249.

    Google Scholar 

  • Boudreau, B. P. (1997) Diagenetic Models and their Implementation. Modelling Transport and Reactions in Aquatic Sediments, Springer, 414 pp.

  • Bryden, H. L. and Stommel, H. M. (1984) Limiting processes that determine basic features of the circulation in the Mediterranean Sea, Oceanol. Acta 7, 289–296.

    Google Scholar 

  • Cochran, J. K., McKibbin-Vaughan, T., Dornblaser, M. M., Hirschberg, D., Livingston, H. D., and Buessler, K. O. (1990) 210Pb scavenging in the North Atlantic and North Pacific Oceans', Earth Planet. Sci. Lett. 97, 332–352.

    Google Scholar 

  • Cussen, H., Braithwaite, A. C. and Wilson, T. R. S. (1994) A robust, pressure-tolerant, low oxygen demand, dissolved oxygen electrode for profiling into deep ocean sediment, Underw. Techn. 20, 3–7.

    Google Scholar 

  • De Lange, G. J., Middelburg, J. J., and Pruysers, P. A. (1989) Discussion: Middle and late quaternary depositional sequences and cycles in the eastern Mediterranean', Sedimentology 36, 161–158.

    Google Scholar 

  • De Lange, G. J., Van Santvoort, P. J. M., Langereis, C., Thomson, J., Corselli, C., Michard, A., Rossignol-Strick, M., Paterne, M., and Anastasakis, G. (1999) Palaeo-environmental variations in easternMediterranean sediments: A multidisciplinary approach in a prehistoric setting', Progress in Oceanography 44, 369–386.

    Google Scholar 

  • Degens, E. T. (1969) Biogeochemistry of stable carbon isotopes, In: Organic Geochemistry (eds. E. Eglinton and M. T. J. Murphy), Springer Verlag, New York, pp. 304–329.

    Google Scholar 

  • Dekkers, M. J., Langereis, C. G., Vriend, S. P., Van Santvoort, P. J. M., and De Lange, G. J. (1994) Fuzzy c-means cluster analysis of early diagenetic effects on natural remanent magnetisation acquisition in a 1.1 My piston core from the central Mediterranean, Phys. Earth Planet. Int. 85, 155–171.

    Google Scholar 

  • Dugdale, R. C. and Wilkerson, F. P. (1988) Nutrient sources and primary production of the southeastern Mediterranean, Oceanologica Acta 9, 179–184.

    Google Scholar 

  • Emerson, S., Fischer, K., Reimers, C., and Heggie, D. (1985) Organic carbon dynamics and preservation in deep-sea sediments, Deep-Sea Research 32, 1–12.

    Google Scholar 

  • Emerson, S. and Hedges, J. I. (1988) Processes controlling the organic carbon content of open ocean sediments, Paleoceanography 3, 621–634.

    Google Scholar 

  • Fisher, N. S., Cochran, J. K., Krishnaswami, S., and Livingston, H. D. (1988) Predicting the ocean flux of radionuclides on sinking biogenic debris, Nature 335, 622–625.

    Google Scholar 

  • Flynn, W. W. (1968) The determination of low levels of polonium-210 in environmental materials, Anal. Chim. Acta 43, 221–227.

    Google Scholar 

  • Gacia, E., Duarte, C. M., and Middelburg, J. J. (2002) Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow, Limnol. Oceanogr. 47, 23–32.

    Google Scholar 

  • Glud, R. N., Gunderse, J. K., Jorgensen, B. B., Revsbach, N. P., and Schulz, H. D. (1994) Diffusive and total uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements, Deep-Sea Res. 41, 1767–1788.

    Google Scholar 

  • Goldberg, E. D. and Koide, M. (1962) Geochronological studies of deep-sea sediments by the ionium/thorium method, Geochi. Cosmochim. Acta 26, 417–450.

    Google Scholar 

  • Goñi, M. A., Ruttenberg, K. C., and Eglingon, T. I. (1998) A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico, Geochim. Cosmochim. Acta 62, 3055–3075.

    Google Scholar 

  • Grundmanis, V. and Murray, J.W (1982) Aerobic respiration in pelagic marine sediments, Geochim. Cosmochim. Acta 46, 1101–1120.

    Google Scholar 

  • Hammond, D. E., McManus, J., Berelson, W. M., Kilgore, T. E., and Pope, R. H. (1996) Early diagenesis of organic material in equatorial Pacific sediments: Stoichiometry and kinetics, Deep-Sea Res. II 43, 1365–1412.

    Google Scholar 

  • Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Strom, M., and Forsberg, B. R. (1994) Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids, Limnol. Oceanogr. 39, 743–761.

    Google Scholar 

  • Hedges, J. I. and Keil, R. G. (1995) Sedimentary organic matter preservation: An assessment and speculative synthesis, Mar. Chem. 49, 81–115.

    Google Scholar 

  • Higgs, N. C., Thomson, J., Wilson, T. R. S., and Croudace, I. W. (1994) Modification and complete removal of eastern Mediterranean sapropels by postdepositional oxidation, Geology 22, 423–426.

    Google Scholar 

  • Huang, Y, Dupont, L., Sarnthein, M., Hayes, J. M., and Eglinton, G. (2000) Mapping of C4 plant input from North West Africa into North East Atlantic sediments, Geochim. Cosmochim. Acta 64, 3505–3515.

    Google Scholar 

  • Jasper, J. P. and Hayes, J. M. (1993) Refined estimation of marine and terrigenous contributions to sedimentary organic carbon', Glob. Biogeochem. Cycles 7, 451–461.

    Google Scholar 

  • JØrgensen, B. B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. 2. Calculations from mathematical models. J. Geomicrobiol. 1, 29–51.

    Google Scholar 

  • Legeleux, F., Reyss, J.-L., and Schimdt, S. (1994) Particle mixing rates in sediments of the northeast tropical Atlantic: Evidence from 210Pbxs, 137Cs, 228Thxs and 234Thxs downcore distributions, Earth Planet. Sci. Lett. 128, 545–562.

    Google Scholar 

  • Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C. (1995) An estimate of global primary production in the ocean from satellite radiometer data, J. Plankt. Res. 17, 1245–1271.

    Google Scholar 

  • Meysman, F. (2001) Modelling the influence of ecological interactions on reactive transport processes in sediments, Ph.D. Thesis, University of Gent, 213 pp.

  • Meysman, F. J. R., Middelburg, J. J., Herman, P. M. J., and Heip, C. H. R. (in press) Reactive transport in surface sediments. II. MEDIA: An object-oriented problem-solving environment for early diagenesis, Computers & Geosciences.

  • Moore, W. S. and Dymond, J. (1988) Correlations of 210Pb removal with organic carbon fluxes in the Pacific Ocean, Nature 331, 541–544.

    Google Scholar 

  • Müller, P. J. and Suess, E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans – I. Organic carbon preservation, Deep-Sea Research 26A, 1347–1362.

    Google Scholar 

  • Nijenhuis, I. A., Becker, J. J., and De Lange, G. J. (2001) Geochemistry of coeval marine sediments in Mediterranean ODP cores and a land section: Implications for sapropel formation models, Palaeogeogr. Palaeoclimat. Palaeo-ecol. 165, 97–112.

    Google Scholar 

  • Nozaki, Y., Cochran, J. K., Turekian, K. K., and Keller, G. (1977) Radiocarbon and 210Pb distribution in submersible-taken deep-sea cores from Project FAMOUS, Earth. Planet. Sci. Lett. 34, 167–173.

    Google Scholar 

  • Prahl, F. G., Bennet, J. T. and Carpenter, R. (1980) The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington, Geochim. Cosmochim. Acta 44, 1967–1976.

    Google Scholar 

  • Prahl, F.G., De Lange, G. J., Lyle, M., and Sparrow, M. A. (1989) Post depositional stability of longchain alkenones under contrasting redox conditions, Nature 341, 434–437.

    Google Scholar 

  • Pruysers, P. A., De Lange, G. J., and Middelburg, J. J. (1991) Geochemistry of eastern Mediterranean sediments: Primary sediment composition and diagenetic alterations, Mar. Geol. 100, 137–154.

    Google Scholar 

  • Pruysers, P. A., De Lange, G. J., Middelburg, J. J., and Hydes, D. J. (1993) The diagenetic formation of metal-rich layers in sapropel-containing sediments in the eastern Mediterranean, Geochim. Cosmochim. Acta 57, 257–536.

    Google Scholar 

  • Radakovitch, O., Cherry, R. D., and Heussner, S. (1999) 210Pb and 210Po: traces of particle transfer on the Rhône continental margin, Deep-Sea Research I 46, 1539–1563.

    Google Scholar 

  • Roether, W. and Well, R. (2001) Oxygen consumption in the eastern Mediterranean, Deep-Sea Research I 48, 1535–1551.

    Google Scholar 

  • Sarnthein, M., Pflaumann, U., Ross, R., Tiedemann, R., and Winn, K. (1992) Transfer functions to reconstruct ocean palaeoproductivity: A comparison, In: Geol. Soc. Spec. Pub. No. 64 (eds. C. P. Summerhayes, W. L. Prell, and K. C. Emeis), pp. 411–427.

  • Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., and Pflaumann, U. (1981) Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa, Nature 293, 193–196.

    Google Scholar 

  • Sigl, W., Charmely, H., Fabricius, F., D'Argoud, G., and Müller, J. (1978) Stratigraphy of late quaternary sediments in the eastern Mediterranean, In: Init. Repts. DSDP 42A (eds. K. J. Hsü, L. Montadert et al.), pp. 445–465.

  • Slomp, C. P., Thomson, J., and De Lange, G. J. (2002) Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel, Geochim. Cosmochim. Acta 66, 1171–1184.

    Google Scholar 

  • Soetaert, K., Herman, P. M. J., Middelburg, J. J., De Stigter, H. S., Van Weering, T. E.W., Epping, E., and Helder, W. (1996) Modelling of 210Pb-derived mixing activity in ocean margin sediments: Diffusive versus non-local mixing, J. Mar. Res. 54, 1207–1227.

    Google Scholar 

  • Soetaert, K., Herman, P. M. J., Middelburg, J. J. and Heip, C. (1998) Assessing organic matter mineralization, degradability and mixing rate in an ocean margin sediment (Northeast Atlantic) by diagenetic modeling, J. Mar. Res 56, 519–534.

    Google Scholar 

  • Suess, E. (1980) Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization, Nature 288, 260–263

    Google Scholar 

  • Thomson, J., Higgs, N. C., Wilson, T. R. S., Croudace, I. W., De Lange, G. J., and Van Santvoort, P. J. M. (1995) Redistribution and geochemical behaviour of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel, Geochim. Cosmochim Acta 59, 3487–3501.

    Google Scholar 

  • Thomson, J., Mercone, D., De Lange, G. J., and Van Santvoort, P. J. M. (1999) Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence, Mar. Geol. 153, 77–89.

    Google Scholar 

  • Trauth, M. H., Sarntheim, M., and Arnold, M. (1997) Bioturbational mixing depth and carbon flux at the sea floor, Paleoceanography 12, 517–526.

    Google Scholar 

  • Turekian, K. K., Nozaki, Y., and Benninger, L. K. (1977) Geochemistry of atmospheric radon and radon products, Ann. Rev. Earth. Planet. Sci. 5, 227–255.

    Google Scholar 

  • Turley, C. M. (1999) The changing Mediterranean Sea – a sensitive ecosytem?, Progress Oceanogr. 44, 387–400.

    Google Scholar 

  • Van Os, B. J. M., Lourens, L. J., Hilgen, F. J., and De Lange, G. J. (1994) The formation of Pliocene sapropels and carbonate cycles in the Mediterranean: Diagenesis, diluton or productivity. Paleoceanogr. 9, 601–617.

    Google Scholar 

  • Van Santvoort, P. J. M., De Lange, G. J., Thomson, J., Cussen, H., Wilson, T. R. S., Krom, M. D., and Ströhle, K. (1996a) Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean, Geochim. Cosmochim. Acta 60, 4007–4024.

    Google Scholar 

  • Van Santvoort, P. J. M., De Lange, G. J., Langereis, C. G., and Dekkers, M. J. (1996b) Geochemical and paleomagnetic evidence for the occurrence of 'missing' sapropels in eastern Mediterranean sediments, Paleoceanography 12, 773–786.

    Google Scholar 

  • Westrich, J. T. and Berner, R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr. 29, 236–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Santvoort, P.J.M., De Lange, G.J., Thomson, J. et al. Oxidation and Origin of Organic Matter in Surficial Eastern Mediterranean Hemipelagic Sediments. Aquatic Geochemistry 8, 153–175 (2002). https://doi.org/10.1023/A:1024271706896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024271706896

Navigation