Skip to main content
Log in

Conductivity and Electrokinetic Potential of Microcrystalline Cellulose Particles in Aqueous HCl and NaOH Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The conductivity of microcrystalline cellulose (MCC) dispersions in aqueous 10–5–10–2 M HCl and NaOH solutions was measured as a function of the particle volume fraction by the conductometry. The dependence of the relative conductivity of MCC particles on pH of equilibrium solutions was determined using the Wagner equation. The electrophoretic mobility of MCC particles in the aforementioned solutions was measured by the microelectrophoresis, and corresponding dependences of the particle ζ potentials on pH of aqueous HCl and NaOH solutions (pH 2–11) were calculated using the Smoluchowski and Henry equations of the electrophoresis theory. It was shown that, in the case of MCC, the Henry equation, which allows for the significant conductivity of the dispersed particles, as compared with the dispersion medium, makes it possible to calculate more accurate ζ potential values and, consequently, to derive the ζ(pH) dependence, which is satisfactorily consistent with the effect of the surface charge and solution ionic strength on the ζ potential in a wide pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kaputskii, F.N. and Yurshkovich, T.L., Lekarstvennye preparaty na osnove proizvodnykh tsellyulozy (Drug Preparations Based on Cellulose Derivatives), Minsk: Universitetskoe, 1989.

    Google Scholar 

  2. Clark, J., Tekhnologiya Tsellyulosy (Cellulose Technology), Moscow: Lesnaya Prom-st', 1983.

    Google Scholar 

  3. Schemp, W., Philipp, B., and Steege, H.H., Papier, 1976, vol. 3, no. 12, p. 501.

    Google Scholar 

  4. Matsuzaki, K. and Uda, K., Sen'i Gakkaishi, 1982, vol. 38, no. 3, p. 40.

    Google Scholar 

  5. Jeevananda, T. and Siddaramaiah, I., Indian J. Eng. Mater. Sci., 1997, vol. 4, no. 1, p. 4.

    Google Scholar 

  6. Beduneau, H., Rev. Prod. Chem., 1964, vol. 67, no. 1321, p. 241.

    Google Scholar 

  7. Belyakov, N.A. and Korol'kova, S.V., Adsorbenty. Katalog-spravochnik (Adsorbents. A Catalog-Handbook), St. Petersburg: MAPO, 1997.

    Google Scholar 

  8. Battista, O.A. and Smith, P.A., Ind. Eng. Chem., 1962, vol. 54, no. 9, p. 20.

    Google Scholar 

  9. Thomas, W.R., Prog. Food Nutr. Sci., 1982, vol. 6, no. 1, p. 341.

    Google Scholar 

  10. Sanderson, G.R., Food Technol. (Chicago), 1981, vol. 35, no. 7, p. 50.

    Google Scholar 

  11. William, T., Food Manuf., 1979, vol. 54, no. 1, p. 30.

    Google Scholar 

  12. Peleg, M. and Hollenbach, A.M., Food Technol. (Chicago), 1984, vol. 38, no. 3, p. 93.

    Google Scholar 

  13. Asatov, S.I., Ussubaev, M.U., and Ussubaev, A.M., Khim. Prir. Soedin., 2000, Spec. issue, p. 62.

  14. Shoikulov, B.B., Nabiev, D.S., Mirzakhidov, Kh.A., et al., Khim. Prir. Soedin., 1999, no. 5, p. 577.

  15. Di Memmo, L.M., Agylirah, G.A., and Wheatley, A., Scanning, 1996, vol. 18, no. 3, p. 236.

    Google Scholar 

  16. Kazuhiro, O., Kobunshi Ronbunshu, 1999, vol. 56, no. 3, p. 141.

    Google Scholar 

  17. Vinogradova, L.I., Mel'chakova, N.A., Sharkov, V.V., et al., Khimiya i tekhnologiya bumagi (Paper Chemistry and Technology), Leningrad: LTA, 1983, p. 87.

    Google Scholar 

  18. Petropavlovskii, G.A. and Kotel'nikova, N.E., Khim. Drev., 1979, no. 6, p. 3.

  19. Plonka, A., Przegl. Papier, 1981, vol. 37, no. 6, p. 228.

    Google Scholar 

  20. Paquot, M., Wiss. Technol., 1982, vol. 15, no. 3, p. 148.

    Google Scholar 

  21. Scallan, A.M., TAPPI J., 1989, no. 1, p. 157.

  22. Been, J. and Oleman, C.W., J. Pulp Pap. Sci., 1995, vol. 21, no. 3, p. 80.

    Google Scholar 

  23. Van De Ven, T.G.M., J. Pulp Pap. Sci., 1999, vol. 25, no. 7, p. 243.

    Google Scholar 

  24. Sidorova, M.P., Ermakova, L.E., Kotel'nikova, N.E., and Kudina, N.P., Kolloidn. Zh., 2001, vol. 63, no. 1, p. 106.

    Google Scholar 

  25. Hunter, R.J., Zeta Potential in Colloid Science. Principles and Applications, London: Academic, 1981.

    Google Scholar 

  26. Yur'ev, V.I., Poverkhnostnye svoistva tsellyuloznykh voloknistykh materialov (Surface Properties of Cellulosic Fibrous Materials), Khimiya, 1996.

  27. Grigorov, O.N., Karpova, I.F., et al., Rukovodstvo k prakticheskim rabotam po kolloidnoi khimii (Laboratory Manual on Colloid Chemistry), Moscow: Khimiya, 1964.

    Google Scholar 

  28. Wagner, K.W., Die Isolierstoffe der Elektrotechnik, Berlin: Springer-Verlag, 1924.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.N., Baturenko, D.Y., Chernoberezhskii, Y.M. et al. Conductivity and Electrokinetic Potential of Microcrystalline Cellulose Particles in Aqueous HCl and NaOH Solutions. Colloid Journal 65, 310–313 (2003). https://doi.org/10.1023/A:1024250621693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024250621693

Keywords

Navigation