Skip to main content
Log in

Changes of the ganglioside pattern and content in human fibroblasts by high density cell population subculture progression

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density.

GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation.

Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase. Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiegandt H, New Compr Biochem 10, 199–260 (1985).

    Google Scholar 

  2. Schroeder L, London E, Brown D, Proc Natl Acad Sci USA 91, 12130–4 (1994).

    Google Scholar 

  3. Hakomori S-I, Handa K, Iwabuchi K, Yamamura S, Prinetti A, Glycobiology 8, xi–xix, (1998).

    Google Scholar 

  4. Prinetti A, Iwabuchi K, Hakomori S-I, J Biol Chem 274, 20916–24 (1999).

    Google Scholar 

  5. Kasahara K, Watanabe Y, Yamamoto T, Sanai Y, J Biol Chem 272, 29947–53 (1997).

    Google Scholar 

  6. Dawson G, Matalon R, Dorfman A, J Biol Chem 247, 5944–50 (1972).

    Google Scholar 

  7. Chigorno V, Tettamanti G, Sonnino S, J Biol Chem 271, 21738–44 (1996).

    Google Scholar 

  8. Yogeeswaran G, Hakomiri S-I, Biochemistry 14, 2151–6 (1975).

    Google Scholar 

  9. Ohsawa T, Exp Gerontol 24, 1–9 (1989).

    Google Scholar 

  10. Colombo I, Sottocornola E, Moretti S, Meloni MA, Pippia P, Berra B, Biochim Biophys Acta 1485, 214–24 (2000).

    Google Scholar 

  11. Dohi T, Nores G, Hakomori S-I, Cancer Res 48, 5680–5 (1988).

    Google Scholar 

  12. Acquotti D, Cantu' L, Ragg E, Sonnino S, Eur J Biochem 225, 271–88 (1994).

    Google Scholar 

  13. Hauttecoeur B, Sonnino S, Ghidoni R, Biochim Biophys Acta 833, 303–7 (1985).

    Google Scholar 

  14. Mauri L, Casellato R, Kirschner G, Sonnino S, Glycoconjugate J 16, 197–203 (1999).

    Google Scholar 

  15. Leroy JG, Ho WM, McBrinn MC, Zielke K, Jacob J, O'Brien JS, Pediatr Res 6, 752–7 (1972).

    Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J Biol Chem 193, 265–75 (1951).

    Google Scholar 

  17. Rago R, Mitchen S, Wilding G, Anal Biochem 191, 31–4 (1990).

    Google Scholar 

  18. Tettamanti G, Bonali F, Marchesini S, Zambotti V, Biochim Biophys Acta 296, 160170 (1973).

    Google Scholar 

  19. Partridge SM, Biochem J 42, 238–48 (1948).

    Google Scholar 

  20. Stahl E, Anisaldehyd-Schwefelsaure fur Steroide, Terpene Zucker und so w. Dunnschicht Chromatographie (Springer Verlag, Berlin, 1962), p. 498.

    Google Scholar 

  21. Nobile-Orazio E, Legname G, Daverio R, Carpo M, Giuliani A, Sonnino S, Scarlato G, Ann Neur 28, 190–4 (1990).

    Google Scholar 

  22. Wu G, Ledeen R, Anal Biochem 173, 368–75 (1988).

    Google Scholar 

  23. Taki T, Handa S, Ishiwaka D, Anal Biochem 223, 232–8 (1994).

    Google Scholar 

  24. Svennerholm L, Biochim Biophys Acta 24, 604–11 (1957).

    Google Scholar 

  25. Maggi A, Susanna L, Bettini E, Mantero G, Zucchi I, Mol Endocrinol 3, 1165–70 (1989).

    Google Scholar 

  26. Sambrook J, Russel DW, Molecular Cloning: A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

  27. Zucchi I, Montagna C, Susani L, Vezzoni P, Dulbecco R, Proc Natl Acad Sci USA 95, 1079–84 (1998).

    Google Scholar 

  28. Gibbs RA, Nguyen PN, McBride LJ, Koepf SM, Caskey CT, Proc Natl Acad Sci USA 86, 1919–23 (1989).

    Google Scholar 

  29. Svennerholm L, Adv Exp Biol Med 125, 11 (1980)

    Google Scholar 

  30. IUPAC-IUBMB Joint Commission on Biochemical Nomenclature, Pure Appl Chem 69, 2475–87 (1997); Carbohydr Res 312, 167‐75 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciannamblo, M., Chigorno, V., Passi, A. et al. Changes of the ganglioside pattern and content in human fibroblasts by high density cell population subculture progression. Glycoconj J 19, 181–186 (2002). https://doi.org/10.1023/A:1024249707516

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024249707516

Navigation