Skip to main content
Log in

Simulation of the Effect of the Freestream Turbulence Parameters on Heat Transfer in an Unsteady Boundary Layer

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A variant of the two-parameter turbulence model which makes it possible continuously to calculate a flow region with laminar, transition and turbulent regimes is proposed for investigating the flow under conditions of high freestream turbulence intensity. It is shown that the properties of the thermal transition can be theoretically described using the quasi-steady turbulence model in the case of periodic freestream velocity distribution. The numerical results are compared with theoretical and experimental data. The approach proposed is developed for determining the combined effect of the parameters of harmonic fluctuations of the external velocity and freestream turbulence on the heat transfer characteristics on a flat plate with different boundary conditions for the enthalpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Lighthill, “The response of laminar skin friction and heat transfer to fluctuations in the stream velocity,” Proc. Roy. Soc. London. Ser. A, 224, No. 1156, 1 (1954).

    Google Scholar 

  2. J. S. Addison and H. P. Hodson, “Modeling of unsteady transitional boundary layers,” Trans. ASME. J. Turbomach., 114, 580 (1992).

    Google Scholar 

  3. H. L. Dryden, “Transition from laminar to turbulent flow,” in: C. C. Lin (Ed.), Turbulent Flow and Heat Transfer, Princeton Univ. Press, Princeton (1959), P. 3.

    Google Scholar 

  4. G. S. Glushko, “Transition to the turbulent flow regime in the boundary layer on a flat plate for various free-stream turbulence scales,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 68 (1973).

  5. V.D. Sovershennyi, “Equations of turbulent flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 31 (1984).

  6. V. G. Lushchik, A.A. Pavel'ev, and A. E. Yakubenko, “Investigation of turbulent transition in a boundary layer for high-intensity external perturbations by means of the three-parametermodel,” in: Problems ofModernMechanics, Vol. 1 [in Russian], Moscow University Press, Moscow (1983), P. 127.

    Google Scholar 

  7. D. P. Telionis, “Review — unsteady boundary layers, separated and attached,” Trans. ASME. J. Fluid Eng., 101, 29 (1979).

    Google Scholar 

  8. J. Cousteix, “Three-dimensional and unsteady boundary-layer computations,” Annu. Rev. Fluid Mech., 18, 173 (1986).

    Google Scholar 

  9. V.A. Aleksin and A. M. Kudryakov, “Unsteady periodic boundary layer with backflow zones,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 82 (1991).

  10. R. L. Simpson, “Review. A review of some phenomena in turbulent flow separation,” Trans. ASME. J. Fluid Eng., 103, 520 (1981).

    Google Scholar 

  11. D. T. Tsahalis, “Turbulent boundary layers with unsteady injection-suction,” Trans. ASME. J. Fluid Eng., 102, 364 (1980).

    Google Scholar 

  12. N. M. Koval'nogov,V. K. Shchukin, and I.V. Filin, “Numerical analysis of heat transfer and friction in an unsteady boundary layer,” Izv. Akad. Nauk SSSR, Energetika i Transport, No. 4, 146 (1989).

  13. V.A. Aleksin, “Simulation of the effect of the freestream turbulence parameters on the boundary layer on a curvilinear airfoil,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 79 (1998).

  14. A. M. Savill (Ed.), Transition Modelling for Turbomachinery II: An Updated Summ. of ERCOFTAC Trans. SIG Progr. 2nd Workshop, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  15. E.Ya. Epik, “Heat transfer effects in transitions,” in: Turbulent Heat Transfer: Engin. Found. Conf. 1996. New York; San Diego, California (1996), P. 1.

  16. R.D. Zerkl and R.D. Lansbury, “Influence of free-stream turbulence on heat transfer to turbine blades, J. Propulsion, No. 1, 82 (1989).

  17. V. A. Aleksin and S. N. Kazeikin, “Simulation of the effect of the freestream turbulence parameters on unsteady boundary layer flow,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 64 (2000).

  18. A. S. Ginevskii, V.A. Ioselevich, A.V. Kolesnikov et al., “Methods for calculating the turbulent boundary layer,” in: Advances in Science and Engineering. Fluid Mechanics, Vol. 11 [in Russian], VINITI, Moscow (1978), P. 155.

    Google Scholar 

  19. K.-Y. Chien, “Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model,” AIAA Journal, 20, 33 (1982).

    Google Scholar 

  20. B. J. Abu-Ghannam and R. Shaw, “Natural transition of boundary layers-the effect of turbulence, pressure gradient, and flow history,” J. Mech. Engng. Sci., 22, No. 5, 213 (1980).

    Google Scholar 

  21. T. Čebeci, “A model for eddy conductivity and turbulent Prandtl number,” Trans. ASME. Ser. C. J. Heat Transfer, 95, 227 (1973).

    Google Scholar 

  22. T. P. Sommer, R. M. C. So, and H. S. Zhang, “Near-wall variable-Prandtl-number turbulence model for compressible flows,” AIAA Journal, 31, 27 (1993).

    Google Scholar 

  23. E. P. Dyban and E.Ya. Epik, Heat and Mass Transfer and Hydrodynamics of Turbulized Flows [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  24. T. Cebeci, “Calculation of unsteady two-dimensional laminar and turbulent boundary layers with fluctuations in external velocity,” Proc. Roy. Soc. London. Ser. A, 355, No. 1681, 225 (1977).

    Google Scholar 

  25. S. K. F. Karlsson, “An unsteady turbulent boundary layer,” J. Fluid Mech., 5, 622 (1959).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksin, V.A. Simulation of the Effect of the Freestream Turbulence Parameters on Heat Transfer in an Unsteady Boundary Layer. Fluid Dynamics 38, 237–249 (2003). https://doi.org/10.1023/A:1024221102495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024221102495

Navigation