Skip to main content
Log in

Optimum Gas Journal Bearing with the Flexible Surface

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The optimum shape of the cylindrical internal deformable (flexible) surface of a gas journal bearing of infinite length is designed. The variational problem of determining the clearance shape giving the maximum bearing load capacity is formulated and solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. J. Maday, “The maximum principle approach to the optimum one-dimensional journal bearing,” Trans. ASME. Ser. F. J. Lubr. Technol., 92, No. 3, 482 (1970).

    Google Scholar 

  2. S. M. Rohde, “A demonstrably optimum one-dimensional journal bearing,” Trans. ASME. Ser. F. J. Lubr. Technol., 94, No. 2, 188 (1968).

    Google Scholar 

  3. G. T. McAllister and S. M. Rohde, “Optimum design of one-dimensional journal bearings,” J. Optimiz. Theory Appl., 41, No. 4, 599 (1983).

    Google Scholar 

  4. Yu.A. Boldyrev and M. E. Slesarev, “One-dimensional gas journal bearings with maximum load capacity,” Mashinovedenie, No. 4, 97 (1987).

  5. A. Kanarachos, “A contribution to the problem of designing optimum performance bearings,” Trans. ASME. Ser. F. J. Lubr. Technol., 99, No. 4 (1977).

  6. N. S. Alekseenko and Yu.Ya. Boldyrev, “Optimization of the shape of a gas journal sector bearing on the basis of the stability criterion,” Mashinovedenie, No. 2, 98 (1984).

  7. V. I. Grabovskii and A.N. Kraiko, “Design of the clearance of a journal bearing with minimum drag torque,” Prikl. Mat. Mekh., 63, 470 (1999).

    Google Scholar 

  8. V. I. Grabovskii, “Optimum design of a gas slider bearing ensuring minimum drag,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 14 (1999).

  9. Yu.V. Peshti, Gas Lubrication [in Russian], Izd-vo MGTU, Moscow (1993).

    Google Scholar 

  10. D. S. Kodnir, Contact Fluid Dynamics of Machine Elements [in Russian], Kuibyshev. Aviats. Inst., Kuibyshev (1970).

    Google Scholar 

  11. D. S. Kodnir, E. P. Zhil'nikov, and Yu. I. Baiborodov Elastic-Hydrodynamic Calculation of Machine Elements [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  12. M.A. Galakhov, P.B. Gusyatnikov, and A. P. Novikov, Mathematical Models of Contact Fluid Dynamics [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  13. M. K. Uskov and V.A. Maksimov, Hydrodynamic Lubrication Theory [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  14. H.D. Conway and H. C. Lee, “The analysis of the lubrication of a flexible journal bearing,” Trans. ASME. Ser. F. J. Lubr. Technol., 97, No. 4 (1978).

    Google Scholar 

  15. H. Heshmat, J.A. Walowit, and O. Pinkus, “Analysis of gas lubricated foil journal bearings,” Trans. ASME. Ser. F. J. Lubr. Technol., 105, No. 4 (1983).

    Google Scholar 

  16. V.N. Constantinescu, Lubricata Cu Gaze, Editura Acad. People's Republic of Romania, Bucharest (1963).

    Google Scholar 

  17. S.A. Sheinberg (Ed.), Gas-Lubricated Sliding Bearings [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabovskii, V.I. Optimum Gas Journal Bearing with the Flexible Surface. Fluid Dynamics 38, 193–202 (2003). https://doi.org/10.1023/A:1024212800678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024212800678

Navigation