Skip to main content
Log in

HDL-C and Triglyceride Levels: Relationship to Coronary Heart Disease and Treatment with Statins

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The association between low-density lipoprotein cholesterol (LDL-C) levels and risk of coronary heart disease (CHD) is well established and LDL-C-lowering is currently the primary target for the treatment of dyslipidemia. However, low levels of high-density lipoprotein cholesterol (HDL-C), and high levels of triglycerides (TG) are also risk factors for CHD and modifying levels of these lipid subfractions, in addition to LDL-C lowering, may have clinical benefits in many patients.

Statins are the first-line drug therapy for the treatment of dyslipidemia because of their efficacy in lowering LDL-C and good tolerability. Statins also have beneficial effects on TG and HDL-C levels although they differ in the degree to which they modify the levels of these lipoproteins. Improvements across the atherogenic components of the lipid profile may be optimized by the co-administration of a statin with a fibrate, niacin or omega-3 fatty acids; however, particular combination therapies have been associated with side effects and may be poorly tolerated. Newer combinations with better tolerability, or new statins with improved efficacy on non-LDL-C lipid subfractions, would be welcome additions to the currently available therapies for the treatment of dyslipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kannel WB, Castelli WP, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease: The Framingham Study. Ann Intern Med 1971;74:1-12.

    Google Scholar 

  2. Stamler J, Wentworth D, Neaton JD for the MRFIT Research Group. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986;256:2823-2828.

    Google Scholar 

  3. Law MR, Wald NJ, Wu T, Hackshaw A, Bailey A. Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: Data from the BUPAstudy. BMJ 1994;308:363-366.

    Google Scholar 

  4. Vogel RA. The management of hypercholesterolemia in patients with coronary artery disease: Guidelines for primary care. Clin Cornerstone 1998;1:51-64.

    Google Scholar 

  5. Assmann G. Pro and con: High-density lipoprotein, triglycerides, and other lipid subfractions are the future of lipid management. Am J Cardiol 2001;87(Suppl):2B-7B.

    Google Scholar 

  6. Rubins HB, Robins SJ, Collins D, et al. for the Veterans Affairs High-Density Lipoprotein Cholesterol Trial Study Group. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med 1999;341:410-418.

    Google Scholar 

  7. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383-1389.

    Google Scholar 

  8. Shepherd J, Cobbe SM, Ford I, et al. for the West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995;333:1301-1307.

    Google Scholar 

  9. Sacks FM, Pfeffer MA, Moye LA, et al. for the Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996;335:1001-1009.

    Google Scholar 

  10. Downs JR, Clearfield M, Weis S, et al. for the AFCAPS/ TexCAPS Research Group. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. JAMA 1998;279:1615-1622.

    Google Scholar 

  11. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998;339:1349-1357.

    Google Scholar 

  12. Genest JJr, McNamara JR, Ordovas JM, et al. Lipoprotein cholesterol, apolipoprotein A-I and B and lipoprotein (a) abnormalities in men with premature coronary artery disease. J Am Coll Cardiol 1992;19: 792-802.

    Google Scholar 

  13. Wood D, _De Backer G, Faergeman O, Graham I, Mancia G, Pyörälä K. Prevention of coronary heart disease in clinical practice: Recommendations of the second joint task force of European and other societies on coronary prevention. Eur Heart J 1998;19:1434-1503.

    Google Scholar 

  14. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001;285:2486-2497.

    Google Scholar 

  15. Steiner G, Schwartz L, Shumak S, Poapst M. The association of increased levels of intermediate-density lipoproteins with smoking and with coronary artery disease. Circulation 1987;75:124-130.

    Google Scholar 

  16. Krauss RM, Lindgren FT, Williams PT, et al. Intermediatedensity lipoproteins and progression of coronary artery disease in hypercholesterolaemic men. Lancet 1987;2:62-66.

    Google Scholar 

  17. Phillips NR, Waters D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation 1993;88:2762-2770.

    Google Scholar 

  18. Chong PH, Bachenheimer BS. Current, new and future treatments in dyslipidaemia and atherosclerosis. Drugs 2000;60:55-93.

    Google Scholar 

  19. Betteridge DJ, Morrell JM, eds. Clinician's Guide to Lipids and Coronary Heart Disease. London: Arnold, 1999.

    Google Scholar 

  20. Packard CJ, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 1997;17:3542-3556.

    Google Scholar 

  21. Tribble DL. Lipoprotein oxidation in dyslipidemia: Insights into general mechanisms affecting lipoprotein oxidative behaviour. Curr Opin Lipidol 1995;6:196-208.

    Google Scholar 

  22. Bjornheden T, Babyi A, Bondjers G, Wiklund O. Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis 1996;123:43-56.

    Google Scholar 

  23. Castelli WP, Garrison RJ, Wilson PWF, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 1986;256:2835-2838.

    Google Scholar 

  24. Abbott RD, Wilson PW, Kannel WB, Castelli WP. High density lipoprotein cholesterol, total cholesterol screening, and myocardial infarction. The Framingham Study. Arteriosclerosis 1988;8:207-211.

    Google Scholar 

  25. Shah PK. Focus on HDL: A new treatment paradigm for athero-thrombotic vascular disease. Exp Opin Invest Drugs 2000;9:2139-2146.

    Google Scholar 

  26. Bakogianni MC, Kalofoutis CA, Skenderi KI, Kalofoutis AT. Clinical evaluation of plasma high-density lipoprotein subfractions (HDL2, HDL3) in non-insulin-dependent diabetics with coronary artery disease. J Diabetes Complications 2001;15:265-269.

    Google Scholar 

  27. Miller NE, Hammett F, Saltissi S, et al. Relation of angiographically defined coronary artery disease to plasma lipoprotein subfractions and apolipoproteins. BMJ 1981;282:1741-1744.

    Google Scholar 

  28. Salonen JT, Salonen R, Seppanen K, Rauramaa R, Tuomilehto J. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction.Aprospective population study in eastern finnish men. Circulation 1991;84:129-139.

    Google Scholar 

  29. Johansson J, Carlson LA, Landou C, Hamsten A. High density lipoproteins and coronary atherosclerosis. A strong inverse relation with the largest particles is confined to normotriglyceridemic patients. Arterioscler Thromb 1991;11:174-182.

    Google Scholar 

  30. Sweetnam PM, Bolton CH, Yarnell JW, et al. Association of the HDL2 HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The caerphilly and speedwell collaborative heart disease studies. Circulation 1994;90:769-774.

    Google Scholar 

  31. Ruotolo G, Ericsson CG, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis InterventionTrial (BECAIT). J Am Coll Cardiol 1998;32:1348-1656.

    Google Scholar 

  32. Rodrigueza WV, Williams KJ, Rothblat GH, Phillips MC. Remodeling and shuttling. Mechanisms for the synergistic effects between different acceptor particles in the mobilzation of cellular cholesterol. Arterioscler Thromb Vasc Biol 1997;17:383-393.

    Google Scholar 

  33. Tall AR. An overview of reverse cholesterol transport. Eur Heart J 1998;19(Suppl. A):A31-A35.

    Google Scholar 

  34. Fruchart JC, De Geteire C, Delfy B, Castro CR. Apolipoprotein A-I-containing particles and reverse cholesterol transport: Evidence for connection between cholesterol efflux and atherosclerosis risk. Atherosclerosis 1994;110(Suppl):S35-S39.

    Google Scholar 

  35. Mackness MI, Durrington PN, Mackness B. How highdensity lipoprotein protects against the effects of lipid peroxidation. Curr Opin Lipidol 2000;11:383-388.

    Google Scholar 

  36. Diederich W, Orso E, Drobnik W, Schmiz G. Apolipoprotein AI and HDL(3) inhibit spreading of primary human monocytes through a mechanism that involves cholesterol depletion and regulation of CDC42. Atherosclerosis 2001;159:313-324.

    Google Scholar 

  37. Vega G-L, Grundy SM. Effect of statins on metabolism of apo-B-containing lipoproteins in hypertriglyceridemic men. Am J Cardiol 1998;81:36B-42B.

    Google Scholar 

  38. Ginsberg HN. Diabetic dyslipidemia: Basic mechanisms underlying the common hypertriglyceridemia and low HDL cholesterol levels. Diabetes 1996;45(Suppl. 3):S27-S30.

    Google Scholar 

  39. Donnelly R, Emslie-Smith AM, Gardner ID, Morris AD. ABC of arterial and venous disease: Vascular complications of diabetes. BMJ 2000;320:1062-1066.

    Google Scholar 

  40. Frost RJA, Otto C, Geiss HC, Schwandt P, Parhofer KG. Effects of atorvastatin versus fenofibrate on lipoprotein pro-files, low-density lipoprotein subfraction distribution, and hemorheologic parameters in type 2 diabetes mellitus with mixed hyperlipoproteinemia. Am J Cardiol 2001;87:44-48.

    Google Scholar 

  41. Brewer HB Jr. Hypertriglyceridemia: Changes in the plasma lipoproteins associated with an increased risk of cardiovascular disease. Am J Cardiol 1999;83:3F-12F.

    Google Scholar 

  42. Vega G-L, Clark LT, Tang A, Marcovina S, Grundy SM, Cohen JC. Hepatic lipase activity is lower in African American men than in white American men: Effects of 5' flanking polymorphism in the hepatic lipase gene (LIPC). J Lipid Res 1998;39:228-232.

    Google Scholar 

  43. Zambon A, Austin MA, Brown BG, Hokanson JE, Brunzell JD. Effect of hepatic lipase on LDL in normal men and those with coronary artery disease. Arterioscler Thromb 1993;13:147-153.

    Google Scholar 

  44. Watson TD, Caslake MJ, Freeman DJ, et al. Determinants ofLDLsubfraction distribution and concentrations in young normolipidemic subjects. Arterioscler Thromb 1994;14:902-910.

    Google Scholar 

  45. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990;82:495-506.

    Google Scholar 

  46. Grundy SM. Small LDL, atherogenic dyslipidemia, and the metabolic syndrome. Circulation 1997;95:1-4.

    Google Scholar 

  47. Reaven GM. Insulin resistance and its consequences: Noninsulin dependent diabetes mellitus and coronary heart disease. In: LeRoith D, Taylor SI, Ofefsky JM, eds. Diabetes Mellitus: A Fundamental and Clinical Text. Philadelphia: Lippincott-Raven, 1996:509-519.

    Google Scholar 

  48. Assmann G, Schulte H. The importance of triglycerides: Results from the Prospective Cardiovascular M¨ unster (PROCAM) Study. Eur J Epidemiol 1992;8(Suppl. 1):99-103.

    Google Scholar 

  49. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Triglyceride concentration in ischemic heart disease: An eightyear follow-up in the Copenhagen Male Study. Circulation 1998;97:1029-1036.

    Google Scholar 

  50. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 1998;81:7B-12B.

    Google Scholar 

  51. Bolibar I, von Eckardstein A, Assmann G, Thompson S. Short-term prognostic value of lipid measurements in patients with angina pectoris. The ECAT Pectoris Study Group: European Concerted Action on Thrombosis and Disabilities. Thromb Haemost 2000;84:955-960.

    Google Scholar 

  52. Foody JM, Ferdinand FD, Pearce GL, Lytle BW, Cosgrove DM, Sprecher DL. HDL cholesterol level predicts survival in men after coronary artery bypass graft surgery: 20-year experience from the Cleveland Clinic Foundation. Circulation 2000;102(Suppl. 3):III-90-III-94.

    Google Scholar 

  53. Assmann G, Cullen P, Schulte H. The Munster Heart Study (PROCAM). Results of follow-up at 8 years. Eur Heart J 1998;19(Suppl. A):A2-A11.

    Google Scholar 

  54. Assmann G, Schulte H, von Eckardstein A. Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am J Cardiol 1996;77:1179-1184.

    Google Scholar 

  55. O'Brien T, Nguyen TT. Lipids and lipoproteins in women. Mayo Clin Proc 1997;72:235-244.

    Google Scholar 

  56. ECATangina pectoris study: Baseline associations of haemostatic factors with extent of coronary arteriosclerosis and other coronary risk factors in 3000 patients with angina pectoris undergoing coronary angiography. Eur Heart J 1993;14:8-17.

    Google Scholar 

  57. Westerveld HT, Roeters van Lennep JE, Roeters van Lennep HWO, et al. Apolipoprotein B and coronary artery disease in women. A cross-sectional study in women undergoing their first coronary angiography. Arterioscler Thromb Vasc Biol 1998;18:1101-1107.

    Google Scholar 

  58. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000;101:207-213.

    Google Scholar 

  59. Knopp RH. Drug treatment of lipid disorders.NEngl J Med 1999;341:498-511.

    Google Scholar 

  60. Bonn V, Cheung RC, Chen B, Taghibiglou C, Van Iderstine SC, Adlei K. Simvastatin, an HMG-CoA reductase inhibitor, induces the synthesis and secretion of apolipoprotein AI cells in HepG2 cells and primary hamster hepatocytes. Atherosclerosis 2002;163:59-68.

    Google Scholar 

  61. Guerin M, Egger P, Soudant C, et al. Dose-dependent action of atorvastatin in type IIB hyperlipidemia: Preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Atherosclerosis 2002;163:287-296.

    Google Scholar 

  62. Davignon J, Laaksonen R. Low-density lipoproteinindependent effects of statins. Curr Opin Lipidol 1999; 10:543-559.

    Google Scholar 

  63. Lefer AM, Scalia R, Lefer DJ. Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: New concepts for cardiovascular disease. Cardiovasc Res 2001;49:281-287.

    Google Scholar 

  64. Vaughan CJ, Gotto AM Jr, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 2000;35:1-10.

    Google Scholar 

  65. Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000;6:1004-1010.

    Google Scholar 

  66. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332:481-487.

    Google Scholar 

  67. O'Driscoll G, Green D, Taylor RR. Simvastatin, an HMGCoA reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126-1131.

    Google Scholar 

  68. Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol 1999;19:2894-2900.

    Google Scholar 

  69. Ridker PM, Rifai N, Pitman Lowenthal S. Rapid reduction in C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation 2001;103:1191-1193.

    Google Scholar 

  70. Bellosta S, Ferri N, Arnaboldi L, Bernini F, Paoletti R, Corsini A. Pleiotropic effects of statins in atherosclerosis and diabetes. Diabetes Care 2000;23(Suppl. 2):B72-B78.

    Google Scholar 

  71. Baetta R, Donetti E, Comparato C, et al. Proapoptotic effect of atorvastatin on stimulated rabbit smooth muscle cells. Pharmacol Res 1997;36:115-121.

    Google Scholar 

  72. Buemi M, Allegra A, Senatore M, et al. Pro-atoptotic effect of fluvastatin on human smooth muscle cells. Eur J Pharmacol 1999;370:201-203.

    Google Scholar 

  73. Kaneider NC, Reinisch CM, Dunzendorfer S, Meierhofer C, Djanani A, Wiedermann CJ. Induction of apoptosis and inhibition of migration of inflammatory and vascular wall cells by cerivastatin. Atherosclerosis 2001;158:23-33.

    Google Scholar 

  74. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: Implications for cardiovascular event reduction. JAMA 1998;279:1643-1650.

    Google Scholar 

  75. Alfon J, Royo T, Garcia-Moll X, Badimon L. Platelet deposition on eroded vessel walls at a stenotic shear rate is inhibited by lipid-lowering treatment with atorvastatin. Arterioscler Throm Vasc Biol 1999;19:1812-1817.

    Google Scholar 

  76. Jones P, Kafonek S, Laurora I, Hunninghake D. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin and fluvastatin in patients with hypercholesterolemia (The CURVES Study). Am J Cardiol 1998;81:582-587.

    Google Scholar 

  77. Paolisso G, Barbagallo M, Petrella G, et al. Effects of simvastatin and atorvastatin administration on insulin resistance and respiratory quotient in aged dyslipidemic non-insulin dependent diabetic patients. Atherosclerosis 2000;150:121-127.

    Google Scholar 

  78. Sheu WH, Jeng CY, Lee WJ, Lin SY, Pei D, Chen YT. Simvastatin treatment on postprandial hypertriglyceridemia in type 2 diabetes mellitus patients with combined hyperlipidemia. Metabolism 2001;50:355-359.

    Google Scholar 

  79. BrownWV, Zedler BK, Bays HE, Hassman HA, Chitra RR, Miller E. Long-term efficacy and safety of rosuvastatin: Results of a 52-week comparator-controlled trial versus pravastatin and simvastatin. Eur Heart J 2001;22(Abstr. Suppl):270.

    Google Scholar 

  80. Olsson AG, Pears J, McKellar J, Mizan J, Raza A. Effect of rosuvastatin on low-density lipoprotein cholesterol in patients with hypercholesterolemia. Am J Cardiol 2001;88:504-508.

    Google Scholar 

  81. Olsson A, Southworth H, Wilpshaar JW. Long-term ef-ficacy and safety of rosuvastatin: Results of a 52-week comparator-controlled trial versus atorvastatin. Eur Heart J 2001;22(Abstr. Suppl):253.

    Google Scholar 

  82. Hunninghake DB, Chitra RR, Simonson SG, Schneck DW. Treatment of hypertriglyceridaemic patients with rosuvastatin. Diabetes 2001;50(Suppl. 2):A143.

    Google Scholar 

  83. Ballantyne CM. Treating mixed dyslipidemias: Why and how. Clin Cardiol 2001;24(Suppl II):II-6-II-9.

    Google Scholar 

  84. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA 1990;264:71-75.

    Google Scholar 

  85. Schectman G, Hiatt J. Drug therapy for hypercholesterolemia in patients with cardiovascular disease: Factors limiting achievement of lipid goals.AmJMed 1996;100:197-204.

    Google Scholar 

  86. Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001;2:205-207.

    Google Scholar 

  87. Pauciullo P, Borgnino C, Paoletti R, Mariani M, Mancini M. Efficacy and safety of a combination of fluvastatin and bezafibrate in patients with mixed hyperlipidaemia (FACT study). Atherosclerosis 2000;150:429-436.

    Google Scholar 

  88. Kashyap ML, Evans R, Simmons PD, Kohler RM, McGovern ME. New combination niacin/statin formulation shows pronounced effects on major lipoproteins and is well tolerated. J Am Coll Cardiol 2000;35(Suppl. A): 326.

    Google Scholar 

  89. Harris WS. Non pharmacologic treatment of hypertriglyceridemia: Focus on fish oils. Clin Cardiol 1999;22 (Suppl. II):II40-II43.

    Google Scholar 

  90. Alaswad K, O'Keefe JH, Moe RM. Combination drug therapy for dyslipidemia. Curr Atheroscler Rep 1999;1:44-49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaw, A. HDL-C and Triglyceride Levels: Relationship to Coronary Heart Disease and Treatment with Statins. Cardiovasc Drugs Ther 17, 53–62 (2003). https://doi.org/10.1023/A:1024207925670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024207925670

Navigation