Skip to main content
Log in

Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Durán C and Martínez Romero E 2002 Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch. Microbiol.

  • Aguilar O M, López M V and Riccillo P M 2001 The diversity of rhizobia nodulating beans in Northwest Argentina as a source of more efficient inoculant strains. J. Biotechnol. 91, 181–188.

    PubMed  Google Scholar 

  • Aguilar O M, Lopez M V, Riccillo P M, Gonzalez R A, Pagano M, Grasso D H, Pühler A and Favelukes G 1998 Prevalence of the Rhizobium etli like allele in genes coding for 16S rRNA among the indigenous rhizobial populations found associated with wild beans from the Southern Andes in Argentina. Appl. Environ. Microbiol. 64, 3520–3524.

    PubMed  Google Scholar 

  • Amarger N, Bours M, Revoy F, Allard M R and Laguerre G 1994 Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil 161, 147–156.

    Google Scholar 

  • Amarger N, Macheret V and Laguerre G 1997 Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst Bacteriol. 47, 996–1006.

    PubMed  Google Scholar 

  • Andrews D J and Kassam A H 1976 The importance of multiple cropping in increasing world food supplies. In Multiple Cropping. Eds. I R Papendick, P A Sanchez and G B Triplett. pp. 1–11. A.S.A Special Publ. 27. Amer. Soc. Agron. Madison WI, USA.

    Google Scholar 

  • Anyango B, Wilson K J, Beynon J L and Giller K E 1995 Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl. Environ. Microbiol. 61, 4016–4021.

    Google Scholar 

  • Anyango B, Wilson K and Giller K 1998 Competition in Kenyan soils between Rhizobium leguminosarum biovar phaseoli strain Kim5 and R. tropici strain CIAT899 using the gusA marker gene. Plant Soil 204, 69–78.

    Google Scholar 

  • Attewell J and Bliss F A 1985 Host plant characteristics of common bean lines selected using indirect measures of N2 fixation. In Nitrogen Fixation Research Progress. Eds. H J Evans, P J Bottomley and W E Newton. pp. 3–9. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Baudoin J P, Camarena F and Lobo M 1997 Improving Phaseolus genotypes for multiple cropping systems. Euphytica 96, 115–123.

    Google Scholar 

  • Bernal G and Graham P H 2001 Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can. J. Microbiol. 47, 526–534.

    PubMed  Google Scholar 

  • Beynon J L and Josey D P 1980 Demonstration of heterogeneity in a natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J. Gen. Microbiol. 118, 437–442.

    Google Scholar 

  • Bliss F A 1985 Breeding for enhanced dinitrogen fixation potential of common bean (Phaseolus vulgaris L.). In Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp. 303–310. Elsevier Science Publishing Co., Inc.

  • Bliss F A 1993 Breeding common bean for improved biological nitrogen fixation. Plant Soil 152, 71–79.

    Google Scholar 

  • Bolaños-Vásquez M C and Werner D 1997 Effects of Rhizobium tropici, R. etli, and R. leguminosaum bv. phaseoli on nod geneinducing flavonoids in root exudates of Phaseolus vulgaris. Mol. Plant-Microbe Interact. 10, 339–346.

    Google Scholar 

  • Borthakur D and Gao X 1996 A 150-megadalton plasmid in Rhizobium etli strain TAL182 contains genes for nodulation competitiveness on Phaseolus vulgaris L. Can. J. Microbiol. 42, 903–910.

    PubMed  Google Scholar 

  • Brom S, García de los Santos A, Stepkowsky T, Flores M, Dávila G, Romero D and Palacios R 1992 Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J. Bacteriol. 174, 5183–5189.

    PubMed  Google Scholar 

  • Bromfield E S P and Barran L R 1990 Promiscuous nodulation of Phaseolus vulgaris, Macroptilium atropurpureum, and Leucaena leucocephala by indigenous Rhizobium meliloti. Can. J. Microbiol. 36, 369–372.

    Google Scholar 

  • Broughton W J, Jabbouri S and Perret X 2000 Keys to symbiotic harmony. J. Bacteriol. 182, 5641–52.

    PubMed  Google Scholar 

  • Burgos P A, Castellanos J, Mora Y and Mora J 1999 Field inoculation of common bean (Phaseolus vulgaris L.) with high efficiency Rhizobium strains. In Highlights of Nitrogen Fixation Research. Eds. E Martínez and G Hernández. pp. 255–257. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Caballero-Mellado J and Martínez-Romero E 1999 Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26, 111–121.

    Google Scholar 

  • Catoira R, Galera C, de Billy F, Penmetsa R V, Journet E P, Maillet F, Rosenberg C, Cook D, Gough C and Denarie J 2000 Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12, 1647–1665.

    PubMed  Google Scholar 

  • Cava J R, Elias P M, Turowski D A and Noel K D 1989 Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants. J. Bacteriol. 171, 8–15.

    PubMed  Google Scholar 

  • Cevallos M A, Encarnación S, Leija A, Mora Y and Mora J 1996 Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-β-hydroxybutyrate. J. Bacteriol. 178, 1646–1654.

    PubMed  Google Scholar 

  • Chen W X, Li G S, Qi Y L, Wang E T, Yuan H L and Li J L 1991 Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41, 275–280.

    Google Scholar 

  • Chen W-X, Tan Z-Y, Gao J-L, Li Y and Wang E-T 1997 Rhizobium hainanense sp. nov., isolated from tropical legumes. Int. J. Syst. Bacteriol. 47, 870–873.

    PubMed  Google Scholar 

  • Chen W, Wang E, Wang S, Li Y, Chen X and Li Y 1995 Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int. J. Syst. Bacteriol. 45, 153–159.

    PubMed  Google Scholar 

  • Crow V L, Jarvis B D W and Greenwood R M 1981 Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31, 152–172.

    Google Scholar 

  • Davis E O and Johnston A W B 1990 Analysis of three nodD genes in Rhizobium leguminosarum biovar phaseoli; nodD1 is preceded by nolE, a gene whose product is secreted from the cytoplasm. Mol. Microbiol. 4, 921–932.

    PubMed  Google Scholar 

  • Dénarié J, Debellé F and Promé J C 1996 Rhizobium lipochitooligosaccharide nodulation factors signaling molecules mediating recognition and morphogenesis. Ann. Rev. Biochem. 65, 503–535.

    PubMed  Google Scholar 

  • D'hooghe I, Michiels J, Vlassak K, Verreth C, Waelkens F and Vanderleyden J 1995 Structural and functional analysis of the fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512. Mol. Gen. Genet. 249, 117–126.

    PubMed  Google Scholar 

  • Diouf A, de Lajudie P, Neyra M, Kersters K, Gillis M, Martínez-Romero E and Gueye M 2000 Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int. J. Syst. Evol.Microbiol. 50, 159–170.

    PubMed  Google Scholar 

  • Dowling D N, Stanley J and Broughton W J 1989 Competitive nodulation blocking of Afghanistan pea is determined by nodDABC and nodFE alleles in Rhizobium leguminosarum. Mol. Gen. Genet. 216, 170–174.

    Google Scholar 

  • Eardly B D, Wang F S, Whittam T S and Selander R K 1995 Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris). Appl. Environ. Microbiol. 61, 507–512.

    PubMed  Google Scholar 

  • Elizondo Barrón J, Pasini R J, Davis D W, Stuthman D D and Graham P H 1999 Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris L.) Field Crop Res. 62, 119–128.

    Google Scholar 

  • Epping B, Hansen A P, Djalali B and Martin P 1994 Symbiotic effectivity of four Phaseolus vulgaris genotypes after inoculation with different strains of Rhizobium under controlled conditions. Z. Naturforsch. 49, 343–351.

    Google Scholar 

  • Francis C A 1986 Multiple cropping systems. Macmillan Publishing Company, New York.

    Google Scholar 

  • Gepts P 1990 Biochemical evidence bearing on the domestication of Phaseolus beans. Econ. Bot. 44S, 28–38.

    Google Scholar 

  • Gepts P and Debouck D 1991 Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In Common Beans: Research for Crop Improvement. Eds. A. van Schoonhoven and O Voysest. pp. 7–53. C. A. B. Int., Wallingford, UK and CIAT, Cali, Colombia.

    Google Scholar 

  • Geniaux E, Flores M, Palacios R and Martínez E (1995) Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int. J. Syst. Bacteriol. 45, 392–394.

    Google Scholar 

  • Giller K E, Anyango B, Beynon J L and Wilson K J 1994 The origin and diversity of rhizobia nodulating Phaseolus vulgaris L. in African soils. In Advances in Legume Systematics 5: The Nitrogen Factor. Eds. J I Sprent and D McKey. pp. 57–62. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Girard L, Brom S, Dávalos A, López O, Soberón M and Romero D 2000 Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol. Plant-Microbe Interact. 13, 1283–1292.

    PubMed  Google Scholar 

  • Girard M de L, Flores M, Brom S, Romero D, Palacios R and Dávila G 1991 Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli. J. Bacteriol. 173, 2411–2419.

    PubMed  Google Scholar 

  • González-Pasayo R and Martínez-Romero E 2000 Multiresistance genes of Rhizobium etli CFN42. Mol. Plant-Microbe Interact. 13, 572–577.

    PubMed  Google Scholar 

  • Graham P H 1981 Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L. Field Crops Res. 4, 93–112.

    Google Scholar 

  • Graham P H, Draeger K J, Ferrey M L, Conroy M J, Hammer B E, Martínez E, Aarons S R and Quinto C 1994 Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J. Microbiol. 40, 198–207.

    Google Scholar 

  • Graham P H and Halliday J 1976 Inoculation and nitrogen fixation in the genus Phaseolus. In Exploiting the Legume Rhizobium Symbiosis in Tropical Agriculture. Eds. J M Vincent, A S Whitney and J Bose. pp. 313–334. Univ. of Hawaii Miscellaneous Publ 145.

  • Graham P H and Vance C P 2000 Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res. 65, 93–107

    Google Scholar 

  • Gutiérrez-Zamora M L and Martínez-Romero E 2001 Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91, 117–126.

    PubMed  Google Scholar 

  • Hardarson G 1994 International FAO/IAEA programmes on biological nitrogen fixation. In Symbiotic Nitrogen Fixation. Eds. P H Graham, M J Sadowsky and C P Vance. pp. 189–202. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hernández-Lucas I, Segovia, L, Martínez-Romero E and Pueppke S G 1995 Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl. Environ. Microbiol. 61, 2775–2779.

    PubMed  Google Scholar 

  • Herrera-Cervera J A, Caballero-Mellado J, Laguerre G, Tichy H-V, Requena N, Amarger N, Martínez-Romero E, Olivares J and Sanjuan J 1999 At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol. Ecol. 30, 87–97.

    Google Scholar 

  • Hungria M, Andrade D D and Chueire L M D 2000 Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem. 32, 1515–1528.

    Google Scholar 

  • Hungria M, Franco A A and Sprent J I 1993 New sources of hightemperature tolerant rhizobia for Phaseolus vulgaris L. Plant Soil 149, 103–109.

    Google Scholar 

  • Hungria M, Johnston A W B and Phillips D A 1992 Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol. Plant-Microbe Interact. 5, 199–203.

    PubMed  Google Scholar 

  • Hungria M, Joseph C M and Phillips D A 1991a Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol. 97, 759–764.

    Google Scholar 

  • Hungria M, Joseph C M and Phillips D A 1991b Anthocyanidins and flavonols, major nod gene inducers from seeds of a blackseeded common bean (Phaseolus vulgaris L.) Plant Physiol. 97, 751–758.

    Google Scholar 

  • Hungria M and Phillips D A 1993 Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean. Mol. Plant-Microbe Interact. 6, 418–422.

    Google Scholar 

  • Hungria M and Vargas M A T 2000 Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res. 65, 151–164.

    Google Scholar 

  • Hungria M, Vargas M A T, Campo R J, Chueire L M O and Andrade D de S 2000 The Brazilian experience with the soybean (Glycine max) and common bean (Phaseolus vulgaris) symbioses. In Nitrogen Fixation: From Molecules to Crop Productivity. Eds. F O Pedrosa, M Hungria, G Yates and W E Newton. pp. 515. Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Isoi T and Yoshida S 1991 Low nitrogen fixation of common bean (Phaseolus vulgaris L.) Soil Sci. Plant Nutr. 37, 559–563.

    Google Scholar 

  • Jordan D C 1984 Family III. Rhizobiaceae. In Bergey's Manual of Systematic Bacteriology. Eds. N R Krieg and J G Holt. Vol. I., pp. 234–242. The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Kaplan L and Lynch T F 1999 Phaseolus (Fabaceae) in archeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Economic Bot. 53, 261–272.

    Google Scholar 

  • Kipe-Nolt J A, Montealegre C M and Tohme J 1992 Restriction of nodulation by the broad host range Rhizobium tropici strain CIAT899 in wild accessions of Phaseolus vulgaris L. New Phytol. 120, 489–494.

    Google Scholar 

  • Laeremans T, Coolsaet N, Verreth C, Snoeck C, Hellings N, Vanderleyden J and Martínez-Romero E 1997 Functional redundancy of genes for sulphate activation enzymes in Rhizobium sp. BR816. Microbiol. 143, 3933–3942.

    Google Scholar 

  • Laeremans T, Snoeck C, Mariën J, Verreth C, Martínez-Romero E, Promé J-C and Vanderleyden J 1999 Phaseolus vulgaris recognizes Azorhizobium caulinodans Nod factors with a variety of chemical substituents. Mol. Plant-Microbe Interact. 12, 820–824.

    PubMed  Google Scholar 

  • Laeremans T and Vanderleyden J 1998 Review: infection and nodulation signalling in Rhizobium-Phaseolus vulgaris symbiosis. World J. Microbiol. Biotechnol. 14, 787–808.

    Google Scholar 

  • Laguerre G, Geniaux E, Mazurier S I, Rodríguez-Casartelli R and Amarger N 1993 Conformity and diversity among field isolates of Rhizobium leguminosarum bv. viciae, bv. trifolii, and bv. phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Can. J. Microbiol. 39, 412–419.

    Google Scholar 

  • Laguerre G, Mavingui P, Allard M-R, Charnay M-P, Louvrier P, Mazurier S-I, Rigottier-Gois L and Amarger N 1996 Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl. Environ. Microbiol. 62, 2029–2036.

    PubMed  Google Scholar 

  • Laguerre G, Nour S M, Macheret V, Sanjuan J, Drouin P and Amarger N 2001 Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 981–993.

    PubMed  Google Scholar 

  • Maréchal R, Mascherpa J M and Stainier F 1978 Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera 28, 1–273.

    Google Scholar 

  • Marroquí S, Zorreguieta A, Santamaría C, Temprano F, Soberón M, Megias M and Downie J A 2001 Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J. Bacteriol. 183, 854–864.

    PubMed  Google Scholar 

  • Martínez E, Pardo M A, Palacios R and Cevallos M A 1985 Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J. Gen. Microbiol. 131, 1779–1786.

    Google Scholar 

  • Martínez-Romero E 1996 Comments on Rhizobium systematics. Lessons from R. tropici and R. etli. In Biology of Plant-Microbe Interactions, International Society for Molecular Plant-Microbe Interactions. Eds. G Stacey, B Mullin and P M Gresshoff. pp. 503–508 St. Paul, Minnesota, USA.

  • Martínez-Romero E, Hernández-Lucas I, Peña-Cabriales J J and Castellanos J Z 1998 Symbiotic performance of some modified Rhizobium etli strains in assays with Phaseolus vulgaris beans that have a high capacity to fix N2. Plant Soil 204, 89–94.

    Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante F M, Franco A A, Graham P and Pardo M A 1991 Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41, 417–426.

    PubMed  Google Scholar 

  • Martínez-Romero E and Rosenblueth M 1990 Increased bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modified Rhizobium strains. Appl. Environ. Microbiol. 56, 2384–2388.

    Google Scholar 

  • Mavingui P, Flores M, Romero D, Martínez-Romero E and Palacios R 1997 Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat. Biotechnol. 15, 564–569.

    PubMed  Google Scholar 

  • Mhamdi R, Jebara M, Aouani ME, Ghrir R and Mars M 1999 Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol. Fertil. Soils. 28, 313–320.

    Google Scholar 

  • Michiels J, D'hooghe I, Verreth C, Pelemans H and Vanderleyden J 1994 Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression. Arch. Microbiol. 161, 404–408.

    PubMed  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E and Vanderleyden J 1998a Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol. Ecol. 26, 193–205.

    Google Scholar 

  • Michiels J, Moris M, Dombrecht B, Verreth C and Vanderleyden J 1998b Differential regulation of Rhizobium etli rpoN 2 gene expression during symbiosis and free-living growth. J. Bacteriol. 180, 3620–3628.

    PubMed  Google Scholar 

  • Michiels J, Verreth C and Vanderleyden J 1994 Effects of temperature stress on bean-nodulating Rhizobium strains. Appl. Environ. Microbiol. 60, 1206–1212.

    Google Scholar 

  • Miranda J, Membrillo-Hernández J, Tabche M L and Soberón M 1996 Rhizobium etli cytochrome mutants with derepressed expression of cytochrome terminal oxidases and enhanced symbiotic nitrogen accumulation. Appl. Microbiol. Biotechnol. 45, 182–188.

    Google Scholar 

  • Montealegre C and Graham P H 1996 Preference in the nodulation of Phaseolus vulgaris c.v. RAB39. II. Effect of delayed inoculation or low cell representation in the inoculant on nodule occupancy by Rhizobium tropici UMR1899. Can. J. Microbiol. 42, 844–850.

    Google Scholar 

  • Montealegre C, Graham P H and Kipe-Nolt J A 1995 Preference in the nodulation of Phaseolus vulgaris cultivar RAB39. Can. J. Microbiol. 41, 992–998.

    Google Scholar 

  • Mostasso L, Mostasso F L, Dias B G, Vargas M A T and Hungria M 2002 Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crop Res. 73, 121–132.

    Google Scholar 

  • Moulin L, Munive A, Dreyfus B and Boivin-Masson C 2001 Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411, 948–950.

    PubMed  Google Scholar 

  • Nodari R O, Tsai S M, Guzmán P, Gilbertson R L and Gepts P 1993 Towards an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134, 341–350.

    PubMed  Google Scholar 

  • Oliveira L A and Graham P H 1990 Speed of nodulation and competitive ability among strains of Rhizobium leguminosarum bv. phaseoli. Arch. Microbiol. 153, 311–315.

    Google Scholar 

  • Oliveira W S de, Meinhardt L W, Sessitsch A and Tsai S M 1998 Analysis of Phaseolus-Rhizobium interactions in a subsistence farming system. Plant Soil 204, 107–115.

    Google Scholar 

  • Pacovsky R S, Bayne H G and Bethlenfalvay G J 1984 Symbiotic interactions between strains of Rhizobium phaseoli and cultivars of Phaseolus vulgaris L. Crop Sci. 24, 101–105.

    Google Scholar 

  • Palmer K M and Young J P W 2000 Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl. Environ. Microbiol. 66, 2445–2450.

    PubMed  Google Scholar 

  • Pardo M A, Lagunez J, Miranda J and Martínez E 1994 Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol. Microbiol. 11, 315–321.

    PubMed  Google Scholar 

  • Parker M A 2002 Bradyrhizobia from wild Phaseolus, Desmodium and Macroptilium species in Northern Mexico. Appl. Environ. Microbiol. 68, 2044–2048.

    PubMed  Google Scholar 

  • Peña-Cabriales J J and Castellanos J Z 1993 Effects of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant Soil 152, 151–155.

    Google Scholar 

  • Peña-Cabriales J J, Grageda-Cabrera O A, Kola V and Hardarson G 1993 Time course of N2 fixation in common bean (Phaseolus vulgaris L.). Plant Soil 152, 115–121.

    Google Scholar 

  • Pereira P A A and Bliss F A 1987 Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil 104, 79–84.

    Google Scholar 

  • Pérez-Ramírez N O, Rogel M A, Wang E, Castellanos J Z and Martínez-Romero E 1998 Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol. Ecol. 26, 289–296.

    Google Scholar 

  • Perret X, Staehelin C and Broughton W J 2000 Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201.

    PubMed  Google Scholar 

  • Pineda P, Kipe-Nolt J A and Rojas E 1994 Rhizobium inoculation increases of bean and maize yields in intercrops on farms in the Peruvian Sierra. Expl. Agric. 30, 311–318.

    Google Scholar 

  • Piñero D, Martínez E and Selander R K 1988 Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 54, 2825–2832.

    PubMed  Google Scholar 

  • Pinto P P, Raposeiras R, Macedo A M, Seldin L, Paiva E and Sá N M H 1998 Effects of high temperature on survival, symbiotic performance and genomic modifications of bean nodulating Rhizobium strains. Rev. Microbiol. 29, 295–300.

    Google Scholar 

  • Priefer U B, Aurag J, Boesten B, Bouhmouch I, Defez R, Filali-Maltouf A, Miklis M, Moawad H, Mouhsine B, Prell J, Schlüter A and Senatore B 2001 Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J. Biotechnol. 91, 223–236.

    PubMed  Google Scholar 

  • Pueppke S G and Broughton W J 1999 Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant-Microbe Interact. 12, 293–318.

    PubMed  Google Scholar 

  • Quinto C, de la Vega H, Flores, M, Leemans J, Cevallos M A, Pardo M A, Azpiroz R, Girard M de L, Calva E and Palacios R 1985 Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc. Natl. Acad. Sci. USA 82, 1170–1174.

    Google Scholar 

  • Ramos M L G and Boddey R M 1987 Yield and nodulation of Phaseolus vulgaris and the competitivity of an introduced Rhizobium strain: effects of lime, mulch and repeated cropping. Soil Biol. Biochem. 19, 171–177.

    Google Scholar 

  • Relic B, Perret X, Estrada-García M T, Kopcinska J, Golinowski W, Krishnan H B, Pueppke S G and Broughton W J 1994 Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13, 171–178.

    PubMed  Google Scholar 

  • Rennie R J and Kemp G A 1983 N2-Fixation in field beans quantified by 15N isotope dilution. I. Effect of strains of Rhizobium phaseoli. Agron. J. 75, 640–644.

    Google Scholar 

  • Roberts G, Leps W T, Silver L E and Brill W J 1980 Use of two dimensional polyacrylamide gel electrophoresis to identify and classify Rhizobium strains. Appl. Environ. Microbiol. 39, 414–422.

    Google Scholar 

  • Robleto E A, Kmiecik K, Oplinger E S, Nienhuis J and Triplett E W 1998 Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Appl. Environ. Microbiol. 64, 2630–2633.

    PubMed  Google Scholar 

  • Rodríguez-Navarro D N, Buendía A M, Camacho M, Lucas M M and Santamaria C 2000 Characterization of Rhizobium spp. bean isolates from South-West Spain. Soil Biol. Biochem. 32, 1601–1613.

    Google Scholar 

  • Romero D, Singleton P W, Segovia L, Morett E, Bohlool B B, Palacios R and Dávila G 1988 Effect of naturally occuring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli. Appl. Environ. Microbiol. 54, 848–850.

    Google Scholar 

  • Rosemeyer V, Michiels J, Verreth C and Vanderleyden J 1998 luxI-and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol. 180, 815–821.

    PubMed  Google Scholar 

  • Rosenblueth M, Hynes M F and Martínez-Romero E 1998 Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol. Gen. Genet. 258, 587–598.

    PubMed  Google Scholar 

  • Rosas J C, Castro J A, Robleto E A and Handelsman J 1998 A method for screening Phaseolus vulgaris L. germplasm for preferential nodulation with a selected Rhizobium etli strain. Plant Soil. 203, 71–78

    Google Scholar 

  • Rossbach S, Rasul G, Schneider M, Eardly B and de Bruijn F J 1995 Structural and functional conservation of the rhizopine catabolism (moc) locus is limited to selected Rhizobium meliloti strains and unrelated to their geographical origin. Mol. Plant-Microbe Interact. 8, 549–559.

    PubMed  Google Scholar 

  • Sadowsky M J, Cregan P B and Keyser H H 1988 Nodulation and nitrogen fixation efficacy of Rhizobium fredii with Phaseolus vulgaris genotypes. Appl. Environ. Microbiol. 54, 1907–1910.

    Google Scholar 

  • Sánchez F, Quinto C, Vázquez M, Spaink H, Wijffelman C A, Cevallos M A, de las Peñas A, Campos F, Padilla J and Lara M 1988 The symbiotic association of Phaseolus vulgaris and Rhizobium leguminosarum bv. phaseoli. In Molecular Genetics of Plant Microbe Interactions. Proceedings of the 4th International Symposium of Molecular Genetics of Plant-Microbe Interactions. Eds. R Palacios and D P S Verma. pp. 370–375. American Phytopathological Society, St. Paul. Minn.

    Google Scholar 

  • Segovia L, Piñero D, Palacios R and Martínez-Romero E 1991 Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol. 57, 426–433.

    PubMed  Google Scholar 

  • Segovia L, Young J P W and Martínez-Romero E 1993 Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43, 374–377.

    PubMed  Google Scholar 

  • Sessitsch A, Hardarson G, Akkermans A D L and de Vos W M 1997a Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol. Ecol. 6, 601–608.

    Google Scholar 

  • Sessitsch, A, Ramírez-Saad H, Hardarson G, Akkermans A D L and de Vos W M. 1997b Classification of Austrian rhizobia and the Mexican isolate FL27 obtained from Phaseolus vulgaris L. as Rhizobium gallicum. Int. J. Syst. Bacteriol. 47, 1097–1101.

    PubMed  Google Scholar 

  • Silva C, Eguiarte L and Souza V 1999 Reticulated and epidemic genetic structure of Rhizobium etli biovar phaseoli in a traditionally managed locality in Mexico. Mol. Ecol. 8, 277–287.

    Google Scholar 

  • Silva C, Vinuesa P, Eguiarte L E, Martínez-Romero E and Souza V 2003 Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: Population genetics and biogeographic implications. Appl. Environ. Microbiol. 69, 884–893.

    PubMed  Google Scholar 

  • Singh S P, Gepts P and Debouck D G 1991 Races of common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 45, 379–396.

    Google Scholar 

  • Snoeck C, Luyten E, Poinsot V, Savagnac A, Vanderleyden J and Promé J C 2001 Rhizobium sp. BR816 produces a complex mixture of known and novel lipochitooligosaccharide molecules. Mol. Plant-Microbe Interact. 14, 678–684.

    PubMed  Google Scholar 

  • Singleton P W and Tavares J W 1986 Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl. Environ. Microbiol. 51, 1013–1018.

    Google Scholar 

  • Somasegaran P, Hoben H J and Lewison L 1991 Symbiotic interactions of Phaseolus acutifolius and P. acutifolius X P. vulgaris hybrid progeny in symbiosis with Bradyrhizobium spp. and Rhizobium leguminosarum bv. phaseoli. Can. J. Microbiol. 37, 497–503.

    Google Scholar 

  • Souza V, Bain J, Silva C, Bouchet V, Valera A, Marquez E and Eguiarte L E 1997 Ethnomicrobiology: do agricultural practices modify the population structure of the nitrogen fixing bacteria Rhizobium etli biovar phaseoli. J. Ethnobiol. 17, 249–266.

    Google Scholar 

  • Souza V, Eguiarte L, Avila G, Cappello R, Gallardo C, Montoya J and Piñero D 1994 Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos, Mexico. Appl. Environ. Microbiol. 60, 1260–1268.

    Google Scholar 

  • Souza, V, Nguyen T T, Hudson R R, Piñero D and Lenski R E 1992 Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc. Natl. Acad. Sci. USA 89, 8389–8393.

    PubMed  Google Scholar 

  • St. Clair D A and Bliss F A 1991 Intrapopulation recombination for 15N-determined dinitrogen fixation ability in common bean. Plant Breeding 106, 215–225.

    Google Scholar 

  • Streeter J G 1994 Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can. J. Microbiol. 40, 513–522.

    Google Scholar 

  • Taboada H, Encarnación S, Vargas M C, Mora Y, Martínez-Romero E and Mora J 1996 Glutamine synthetase II constitutes a novel taxonomic marker in Rhizobium etli and other Rhizobium species. Int. J. Syst. Bacteriol. 46, 485–491.

    Google Scholar 

  • Tohme J, González D O, Beebe S and Duque M C 1995 AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 36, 1375–1384.

    Google Scholar 

  • Triplett E W and Sadowsky M J 1992 Genetics of competition for nodulation of legumes. Annu. Rev. Microbiol. 46, 399–428.

    PubMed  Google Scholar 

  • Valderrama B, Dávalos A, Girard L, Morett E and Mora J 1996 Regulatory proteins and cis-acting elements involved in the transcriptional control of Rhizobium etli reiterated nifH genes. J. Bacteriol. 178, 3119–3126.

    PubMed  Google Scholar 

  • van Berkum P, Beyene D, Bao G, Campbell T A and Eardly B D 1998 Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int. J. Syst. Bacteriol. 48, 13–22.

    PubMed  Google Scholar 

  • Vance C P 1998 Legume symbiotic nitrogen fixation: Agronomic aspects. In The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria, Eds. H P Spaink, A Kondorosi and P J J Hooykaas. pp. 509–530. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • van Rhijn P, Desair J, Vlassak K and Vanderleyden J 1994a The NodD proteins of Rhizobium sp. strain BR816 differ in their interactions with coinducers and in their activities for nodulation of different host plants. Appl. Environ. Microbiol. 60, 3615–3623.

    PubMed  Google Scholar 

  • van Rhijn P, Desair J, Vlassak K and Vanderleyden J 1994b Functional analysis of nodD genes of Rhizobium tropici CIAT 899. Mol. Plant-Microbe Interact. 7, 666–677.

    Google Scholar 

  • van Rhijn P J S, Feys B, Verreth C and Vanderleyden J 1993 Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J. Bacteriol. 175, 438–447.

    PubMed  Google Scholar 

  • van Rhijn P and Vanderleyden J 1995 The Rhizobium-plant symbiosis. Microbiol. Rev. 59, 124–142.

    PubMed  Google Scholar 

  • Vargas A A T and Graham P H 1988 Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Res. 19, 91–101.

    Google Scholar 

  • Vargas A A T and Graham P H 1989 Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant Soil 117, 195–200.

    Google Scholar 

  • Vásquez-Arroyo J, Sessitsch A, Martínez E and Peña-Cabriales J J 1998 Nitrogen fixation and nodule occupancy by native strains of Rhizobium on different cultivars of common bean (Phaseolus vulgaris L.). Plant Soil 204, 147–154.

    Google Scholar 

  • Velázquez E, Martínez-Romero E, Rodríguez-Navarro D N, Trujillo M E, Daza A, Mateos P F, Martínez-Molina E and van Berkum P 2001 Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low-molecular-weight RNA. Appl. Environ. Microbiol. 67, 1008–1010.

    PubMed  Google Scholar 

  • Vieira R F 1994 Effects of rhizobial inoculation, N and Mo applications on the nitrogen nutrition of common bean (Phaseolus vulgaris L.) Ph. D. Dissertation ESALQ/USP-Piracicaba-S. P.-189 p.

  • Vlassak K M, Mercante F, Straliotto R, Franco A, Vuylsteke M and Vanderleyden J 1997 Evaluation of the intrinsic competitiveness and saprophytic competence of Rhizobium tropici IIB strains. Biol. Fertil. Soils 24, 274–282.

    Google Scholar 

  • Vlassak K M and Vanderleyden J 1997 Factors influencing nodule occupancy by inoculant rhizobia. Crit. Rev. Plant Sci. 16, 163–229.

    Google Scholar 

  • Vlassak K, Vanderleyden J and Franco A 1996 Competition and persistence of Rhizobium tropici and Rhizobium etli in tropical soil during successive bean (Phaseolus vulgaris L.) cultures. Biol. Fertil. Soils 21, 61–68.

    Google Scholar 

  • Wang E T, Rogel M A, García-de los Santos A, Martínez-Romero J, Cevallos M A and Martínez-Romero E 1999a Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int. J. Syst. Bacteriol. 49, 1479–1491.

    PubMed  Google Scholar 

  • Wang E T, van Berkum P, Beyene D, Sui X H, Dorado O, Chen W X and Martínez-Romero E 1998 Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int. J. Syst. Bacteriol. 48, 687–699.

    PubMed  Google Scholar 

  • Wang E T, van Berkum P, Sui X H, Beyene D, Chen W X and Martínez-Romero E 1999b Diversity of rhizobia associated with Amorpha fructicosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J. Syst. Bacteriol. 49, 51–65.

    PubMed  Google Scholar 

  • Wolff A B, Streit W, Kipe-Nolt J A, Vargas H and Werner D 1991 Competitiveness of Rhizobium leguminosarum bv. phaseoli strains in relation to environmental stress and plant defense mechanisms. Biol. Fertil. Soils 12, 170–176.

    Google Scholar 

  • Woolley J and Davis J H C 1991 The agronomy of intercropping with beans. In Common Beans: Research for Crop Improvement. Eds. A van Schoonhoven and O Voysest. pp. 707–735. CAB International/CIAT, Wallingford, UK.

    Google Scholar 

  • Wolyn D J, St. Clair D A, DuBois J, Rosas J C, Burris R H and Bliss F A 1991 Distribution of nitrogen in common bean (Phaseolus vulgaris L.) genotypes selected for differences in nitrogen fixation ability. Plant Soil 138, 303–311.

    Google Scholar 

  • Yang G-P, Debellé F, Savagnac A, Ferro M, Schiltz O, Maillet F, Promé D, Treilhou M, Vialas C, Lindstrom K, Dénarié J and Promé J-C 1999 Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with α, β-unsaturated N-acyl substitutions. Mol. Microbiol. 34, 227–237.

    PubMed  Google Scholar 

  • Young J P W 1985 Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. J. Gen. Microbiol. 131, 2399–2408.

    Google Scholar 

  • Zézé A, Mutch L A and Young J P W 2001 Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environ. Microbiol. 3, 363–370.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Romero, E. Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant and Soil 252, 11–23 (2003). https://doi.org/10.1023/A:1024199013926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024199013926

Navigation