Skip to main content

Advertisement

Log in

Caveolin: A key target for modulating nitric oxide availability in health and disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The endothelial layer is a key component of the cardiovascular system. Recent evidence indicates that employing strategies aimed at preserving the endothelium may have important implications in the battle against cardiovascular disease. Nitric oxide remains the critical factor determinant of endothelial function. Understanding the regulatory components involved in nitric oxide production may elucidate novel targets for improving compromised vascular function. The caveolae/caveolin system has recently become of interest due to its ability to regulate endothelial nitric oxide synthase activity. The caveolae/caveolin system is a multifaceted structure in the plasma membrane, which plays an integral role in cellular signaling. Recognizing the potential of this specialized domain may provide the fundamental knowledge to target the endothelium in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smart EJ, Graf GA, McNiven MA, Sessa WA, Engelman JA, Scherer PE, Okamoto T, Lisanti MP: Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19: 7289-7304, 1999

    Google Scholar 

  2. Predescu D, Predescu S, McQuistan T, Palade GE: Transcytosis of α 1-acidic glycoprotein in the continuous microvascular endothelial. Proc Natl Acad Sci USA 95: 6175-6180, 1998

    Google Scholar 

  3. Glenny JR Jr: The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Lett 314: 45-48, 1992

    Google Scholar 

  4. Shaul PW, Anderson RG: Role of plasmalemmal caveolae in signal transduction. Am J Pysiol 275: L843-L851, 1998

    Google Scholar 

  5. Fielding PE, Fielding CJ: Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 34: 14288-14292, 1995

    Google Scholar 

  6. Palade GE: Fine structure of blood capillaries. J Appl Physiol 24: 1424-1436, 1953

    Google Scholar 

  7. Yamada E: The fine structure of the gall bladder of the mouse. J Biophys Biochem Cytol 1: 445-458, 1955

    Google Scholar 

  8. Smart EJ, Ying Y, Donzell WC, Anderson RG: A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271: 29427-29435, 1996

    Google Scholar 

  9. Fra AM, Williamson E, Simons K, Parton RG: De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 92: 8655-8659, 1995

    Google Scholar 

  10. Li S, Song KS, Koh SS, Kikuchi A, Lisanti MP: Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. A model system for the biochemical and morphological study of caveolae biogenesis. J Biol Chem 271: 28647-28654, 1996

    Google Scholar 

  11. Glenney JR Jr, Soppet D: Sequence and expression of caveolin a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA 89: 10517-10521, 1992

    Google Scholar 

  12. Dietzen DJ, Hastings WR, Lublin DM: Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 270: 6838-6842, 1995

    Google Scholar 

  13. Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC: Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for nitric oxide signaling. Proc Natl Acad Sci USA 93: 6448-6453, 1996

    Google Scholar 

  14. Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, Lisanti MP: Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc Natl Acad Sci USA 92: 9407-9411, 1995

    Google Scholar 

  15. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP: Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272: 6525-6533, 1997

    Google Scholar 

  16. Couet J, Li S, Okamoto T, Scherer PE, Lisanti MP: Molecular and cellular biology of caveolae. Paradoxes and plasticities. Trends Cardiovasc Med 7: 103-110, 1997

    Google Scholar 

  17. Das K, Lewis RY, Scherer PE, Lisanti MP: The membrane-spanning domains of caveolins-1 and-2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J Biol Chem 274: 18721-18728, 1999

    Google Scholar 

  18. Schlegel A, Schwab RB, Scherer PE, Lisanti MP: A role for the caveolin scaffolding domain in mediating the membrane binding in vitro. J Biol Chem 274: 22660-22667, 1999

    Google Scholar 

  19. Schlegel A, Lisanti MP: A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem 275: 21605-21617, 2000

    Google Scholar 

  20. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271: 2255-2261, 1996

    Google Scholar 

  21. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272: 25437-25440, 1997

    Google Scholar 

  22. Venema VJ, Ju H, Zou R, Venema RC. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272: 28187-28190, 1997

    Google Scholar 

  23. Brown D, Rose JK: Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533-544, 1992

    Google Scholar 

  24. Schnitzer J, McIntosh D, Dvorak AM, Liu J, Oh P: Separation of caveolae from associated mircodomains of GPI-anchored proteins. Science 269: 1435-1439, 1995

    Google Scholar 

  25. Garcia-Cardena G, Martasek P, Siler-Masters BS, Skidd PM, Couet JC, Li S, Lisanti MP, Sessa WC: Dissecting the interaction between nitric oxide synthase (NOS) and caveolin: Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272: 25437-25440, 1998

    Google Scholar 

  26. Gosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ: Interactions between caveolin-1 and the reductase domain of endothelial nitric oxide synthase. Consequences for catalysis. J Biol Chem 273: 22267-22271, 1998

    Google Scholar 

  27. Ju H, Zou R, Venema VJ, Venema RC: Direct interaction of endothelial nitric oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272: 18522-18525, 1997

    Google Scholar 

  28. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA: Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121-2126, 1998

    Google Scholar 

  29. Michel T, Li GK, Busconi L: Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci 90: 6252-6256, 1993

    Google Scholar 

  30. Fleming I, Bauersachs J, Fisslthaler B, Busse R: Ca2+-independent activation of the endothelial nitric oxide syntase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 82: 686-695, 1998

    Google Scholar 

  31. Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG: Phosphorylation of endothelial nitric oxide synathase in response to fluid shear stress. Circ Res 79: 984-991, 1996

    Google Scholar 

  32. Garcia-Cardena F, Fan R, Stern DF, Liu J, Sessa WC: Endothelial nitric oxide synathase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 271: 27237-27240, 1996

    Google Scholar 

  33. Nathan C, Xie QW: Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725-13728, 1994

    Google Scholar 

  34. Venema RC, Sayegh HS, Arnal J-F, Harrison DG: Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthase. J Biol Chem 270: 14705-14711, 1995

    Google Scholar 

  35. Fleming I, Busse R: Signal transduction of eNOS activation. Cardio-vascular Res 43: 532-541, 1999

    Google Scholar 

  36. Gachhui R, Abu-Soud HM, Ghosha DK, Presta A, Blazing MA, Mayer B, George SE, Stuehr DJ: Neuronal nitric oxide synthase interaction with calmodulin-troponin C chimeras. J Biol Chem 273: 22267-22271, 1998

    Google Scholar 

  37. Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL, Weissman BA, Lane P, Liu Q, Gross SS: An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 272: 29769-29777, 1997

    Google Scholar 

  38. Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T: Acylation targets endothelial nitric oxide synthase to plasmalemmal caveolae. J Biol Chem 271: 6518-6522, 1996

    Google Scholar 

  39. Shaul PW, Anderson RG: Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275: L843-L851, 1998

    Google Scholar 

  40. Okamoto T, Schlegel A, Scherer PE, Lisanti MP: Caveolins, a family of scaffolding proteins for organizing ‘preassembled signal complexes’ at the plasma membrane. J Biol Chem 273: 5419-5422, 1998

    Google Scholar 

  41. Fleming I, Busse R: Signal transduction of eNOS activation. Cardio-vascular Res 43: 532-541, 1999

    Google Scholar 

  42. Michel JB, Feron O, Sacks D, Michel T: Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272: 15583-15586, 1997

    Google Scholar 

  43. Feron O, Saldana F, Michel JB, Michel T: The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273: 3125-3128, 1998

    Google Scholar 

  44. Michel T, Li GK, Busconi L: Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad USA 90: 6252-6256, 1993

    Google Scholar 

  45. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R: Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells: Circ Res 78: 750-758, 1996

    Google Scholar 

  46. Ju H, Venema VJ, Marrero MB, Venema RC: Inhibitory interactions of the bradykinin B2 receptor with endothelial nitric oxide synthase. J Biol Chem 273: 24025-24029, 1998

    Google Scholar 

  47. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC: Dynamic activation of endothelial nitric oxide synthase by Hsp 90. Nature 392: 821-824, 1998

    Google Scholar 

  48. Vane JR, Anggard EE, Botting RM: Regulatory functions of the vascular endothelium. N Engl J Med 323: 27-36, 1990

    Google Scholar 

  49. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL: Hyper-cholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 103: 897-905, 1999

    Google Scholar 

  50. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart E J: Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274: 32512-32519, 1999

    Google Scholar 

  51. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ: High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide syntase localization and activation in caveolae. J Biol Chem 275: 11278-11283, 2000

    Google Scholar 

  52. Maron DJ, Fazio S, Linton MF: Current perspectives on statins. Circulation 101: 207-213, 2000

    Google Scholar 

  53. Takemoto M, Liao JK: Pleiotropic effects of 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol 11: 1712-9, 2001

    Google Scholar 

  54. Dumont AS, Hyndman ME, Dumont RJ, Fedak PM, Kassell NF, Sutherland GR, Verma S: Improvement of endothelial function in insulin-resistant carotid arteries treated with pravastatin. J Neurosurg 95: 466-71, 2001

    Google Scholar 

  55. Feron O, Dessy C, Desager JP, Balligand JL: Hydroxy-methylglutarylcoenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 103: 113-118, 2001

    Google Scholar 

  56. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP: Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271: 15160-15165, 1996

    Google Scholar 

  57. Campbell L, Gumbleton M, Ritchie K: Caveolae and the caveolins in human disease. Adv Drug Del Rev 49: 325-335, 2001

    Google Scholar 

  58. Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M, Lisanti MP: Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 275: 38048-38058, 2000

    Google Scholar 

  59. Repetto S, Bado M, Broda P, Lucania G, Masetti E, Sotgia F, Carbone I, Pavan A, Bonilla E, Cordone G, Lisanti MP, Minetti C: Increased number of caveolae and caveolin-3 overexpression in Duchenne muscular dystrophy. Biochem Biophys Res Commun 261: 547-550, 1999

    Google Scholar 

  60. Vaghy PL, Fang J, Wu W, Vaghy LP: Increased caveolin-3 levels in mdx mouse muscles. FEBS Lett 431: 125-127, 1998

    Google Scholar 

  61. Volonte D, Galbiati F, Lisanti MP: Visualization of caveolin-1, a caveolar marker protein, in living cells using green fluorescent protein (GFP) chimeras. The subcellular distribution of caveolin-1 is modulated by cell-cell contact. FEBS Lett 445: 431-439, 1999

    Google Scholar 

  62. Sager R, Sheng S, Anisowicz A, Sotiropoulou G, Zou Z, Stenman G, Swisshelm K, Chen Z, Hendrix MJ, Pemberton P et al.: RNA genetics of breast cancer: Maspin as paradigm. Cold Spring Harb Symp Quant Biol 59: 537-546, 1994

    Google Scholar 

  63. Koleske AJ, Baltimore D, Lisanti MP: Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 92: 1381-1385, 1995

    Google Scholar 

  64. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP: Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17: 6633-6648, 1998

    Google Scholar 

  65. Piech A, Massart PE, Dessy C, Feron O, Havaux X, Morel N, Vanoverschelde JL, Donckier J, Balligand JL: Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 282: H219-H231, 2002

    Google Scholar 

  66. Gyurko R, Kuhlencordt P, Fishman MC, Huang PL: Modulation of mouse cardiac function in vivo by eNOS and ANP. Am J Physiol Heart Circ Physiol 278: H971-H981, 2000

    Google Scholar 

  67. Grocott-Mason R, Anning P, Evans H, Lewis MJ, Shah AM: Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am J Physiol 267: H1804-H1813, 1994

    Google Scholar 

  68. Keaney JF Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS: Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol 271: H2646-H2652, 1996

    Google Scholar 

  69. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH: Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 75: 1086-1095, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhillon, B., Badiwala, M.V., Li, SH. et al. Caveolin: A key target for modulating nitric oxide availability in health and disease. Mol Cell Biochem 247, 101–109 (2003). https://doi.org/10.1023/A:1024198518582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024198518582

Navigation