Skip to main content

Scaling laws in the mammalian neocortex: Does form provide clues to function?

Abstract

Although descriptions of form have been a mainstay of comparative neuroanatomy, less well explored is the use of quantitative approaches, especially at the cellular level. In the neocortex, many gross and cellular anatomical measures show striking regularities over a wide range of brain sizes. Here we review our recent efforts to accurately characterize these scaling trends and explain them in functional terms. We focus on the expansion of white matter volume with increasing brain size and the formation of surface folds, in addition to principles of processing speed and energetics that may explain these phenomena. We also consider exceptional cases of neocortical morphology as a means of testing putative functional principles and developmental mechanisms. We illustrate this point by describing several morphological specializations at the cellular level that may constitute functional adaptations. Taken together, these approaches illustrate the benefits of a synthesis between comparative neuroanatomy and biophysics.

This is a preview of subscription content, access via your institution.

References

  • Aiello, L. C. &; Wheeler, P. (1995) The expensive-tissue hypothesis: The brain and digestive system in primate evolution. Current Anthropology 36, 199–221.

    Google Scholar 

  • Allen, C. &; Stevens, C. F. (1994) An evaluation of causes for unreliability of synaptic transmission. Proceedings of the National Academy of Sciences USA 91, 10380–10383.

    Google Scholar 

  • Allman, J. &; Hasenstaub, A. (1999) Brains, maturation times, and parenting. Neurobiology of Aging 20, 447–454.

    PubMed  Google Scholar 

  • Allman, J. M. (1999) Evolving Brains. New York: W.H. Freeman.

    Google Scholar 

  • Beaulieu, C. &; Colonnier, M. (1985) A laminar analysis of the number of round-asymmetrical and flatsymmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. Journal of Comparative Neurololy 231, 180–189.

    Google Scholar 

  • Beaulieu, C. &; Colonnier, M. (1989) Number and size of neurons and synapses in the motor cortex of cats raised in different environmental complexities. Journal of Comparative Neurology 289, 178–181.

    PubMed  Google Scholar 

  • Braitenberg, V. (1998) Selection, the impersonal engineer. Artificial Life 4, 309–310.

    PubMed  Google Scholar 

  • Braitenberg, V. &; SchÜz, A. (1998) Cortex: Statistics and Geometry of Neuronal Connectivity. 2nd ed. Berlin: Springer-Verlag.

    Google Scholar 

  • Bray, D. (1979) Mechanical tension produced by nerve-cells in tissue-culture. Journal of Cell Science 37, 391–410.

    PubMed  Google Scholar 

  • Brodmann, K. (1905) Beitrage zur histologischen Lokalisation der Grosshirnrinde: Die Rindenfeldern der niederen Affen. Journal of Psychology and Neurology 4, 177–226.

    Google Scholar 

  • Changizi, M. A. (2001) Principles underlying mammalian neocortical scaling. Biological Cybernetics 84, 207–215.

    PubMed  Google Scholar 

  • Changizi, M. A. (2003) The Brain from 25,000 Feet: High Level Explorations of Brain Complexity, Perception, Induction and Vagueness. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Chan-Palay, V., Palay, S. L. &; Billingsgagliardi, S. M. (1974) Meynert cells in the primate visual cortex. Journal of Neurocytology 3, 631–658.

    PubMed  Google Scholar 

  • Chenn, A. &; Walsh, C. A. (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369.

    PubMed  Google Scholar 

  • Cherniak, C. (1994) Component placement optimization in the brain. Journal of Neuroscience 14, 2418–2427.

    PubMed  Google Scholar 

  • Chklovskii, D. B. &; Stevens, C. F. (2000) Wiring optimization in the brain. Advances in Neural Information Processing Systems 12, 103–107.

    Google Scholar 

  • Clark, D. A., Mitra, P. P. &; Wang, S. S.-H. (2001) Scalable architecture in mammalian brains. Nature 411, 189–193.

    PubMed  Google Scholar 

  • Cowan, W. M., SÜdhof, T. C. &; Stevens, C. F. (2001) Synapses. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Cragg, B. G. (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. Journal of Anatomy 101, 639–654.

    PubMed  Google Scholar 

  • deFelipe, J., Alonso-Nanclares, L. &; Arellano, J. I. (2002) Microstructure of the neocortex: Comparative aspects. Journal of Neurocytology 31(3-5), 299–316.

    PubMed  Google Scholar 

  • Elston, G. N., Benavides-Piccione, R. &; deFelipe, J. (2001) The pyramidal cell in cognition: A comparative study in human and monkey. Journal of Neuroscience 21, RC163.

  • Feng, Y. &; Walsh, C. A. (2001) Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nature Reviews in Neuroscience 2, 408–416.

    Google Scholar 

  • Feynman, R. P. (1996) Feynman Lectures on Computation. Reading, MA: Perseus Books.

    Google Scholar 

  • Finlay, B. L., Darlington, R. B. &; Nicastro, N. (2001) Developmental structure in brain evolution. Behavior and Brain Sciences 24, 263–278.

    Google Scholar 

  • Frahm, H. D., Stephan, H. &; Stephan, M. (1982) Comparison of brain structure volumes in insectivora and primates. I. Neocortex. Journal für Hirnforschung 23, 375–389.

    Google Scholar 

  • Fries, W., Keizer, K. &; Kuypers, H. G. (1985) Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5. Experimental Brain Research 58, 613–616.

    Google Scholar 

  • Goldman-Rakic, P. S. &; Rakic, P. (1984) Experimental modification of gyral patterns. In Cerebral Dominance: The Biological Foundation (edited by Geschwind, N. &; Galaburda, A. M.) pp. 179–192. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Heffner, R. S. &; Masterton, R. B. (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain, Behavior and Evolution 23, 165–183.

    Google Scholar 

  • Hillis, W. (1986) The Connection Machine. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hof, P. R., Glezer, I., Conde, F., Flagg, R. A., Rubin, M. B., Nimchinsky, E. A. &; Vogt Weisenhorn, D. M. (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: Phylogenetic and developmental patterns. Journal of Chemical Neuroanatomy 16, 77–116.

    PubMed  Google Scholar 

  • Hof, P. R., Glezer, I., Nimchinsky, E. A. &; Erwin, J. M. (2000a) Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: Evidence from primates, cetaceans, and artiodactyls. Brain, Behavior and Evolution 55, 300–310.

    Google Scholar 

  • Hof, P. R. &; Morrison, J. H. (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis. Journal of Comparative Neurology 352, 161–186.

    PubMed  Google Scholar 

  • Hof, P. R., Nimchinsky, E. A., Young, W. G. &; Morrison, J. H. (2000b) Numbers of Meynert and layer IVb cells in area V1:Astereologic analysis in young and aged macaque monkeys. Journal of Comparative Neurology 420, 113–126.

    PubMed  Google Scholar 

  • Hofman, M. A. (1985) Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain, Behavior and Evolution 27, 28–40.

    Google Scholar 

  • Hofman, M. A. (1988) Size and shape of the cerebral cortex in mammals. II. The cortical volume. Brain, Behavior and Evolution 32, 17–26.

    Google Scholar 

  • Hofman, M. A. (1989) On the evolution and geometry of the brain in mammals. Progress in Neurobiology 32, 137–158.

    PubMed  Google Scholar 

  • Hofman, M. A. (1991) The fractal geometry of convoluted brains. Journal für Hirnforschung 32, 103–111.

    Google Scholar 

  • Huxley, J. (1932) Problems of Relative Growth. London: Methuen.

    Google Scholar 

  • Jack, J. J. B., Noble, D. &; Tsien, R. W. (1975) Electric Current Flow in Excitable Cells. Oxford: Clarendon Press.

    Google Scholar 

  • Jerison, H. (1987) Brain size. In Encyclopedia of Neuroscience (edited by Adelman, G.) pp. 168–170. Boston: Birkhaeuser.

    Google Scholar 

  • Jerison, H. J. (1991) Brain Size and the Evolution of Mind. New York: American Museum of Natural History.

    Google Scholar 

  • Johnson, J. I., Kirsch, J. A. W., Reep, R. L. &; Switzer III, R. C. (1994) Phylogeny through brain traits: More characters for the analysis of mammalian evolution. Brain, Behavior and Evolution 43, 319–347.

    Google Scholar 

  • Johnston, D. &; Wu, S. M.-S. (1995) Foundations of Cellular Neurophysiology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kaas, J. H. (2000) Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller. Brain and Mind 1, 7–23.

    Google Scholar 

  • Kamiya, Y. &; Yamasaki, F. (1974) Organ weights in Pontoporia Blainvillei and Platanista Gangetica. Sci. Rep. Whales Res. Inst. 26, 265–270.

    Google Scholar 

  • Krubitzer, L. (1995) The organization of neocortex in mammals: Are species differences really so different? Trends in Neuroscience 18, 408–417.

    Google Scholar 

  • Kuida, K., Haydar, T. F., Kuan, C.-Y., Gu, Y., Taya, C., Karasuyama, H., Su, M. S., Rakic, P. &; Flavell, R. A. (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337.

    PubMed  Google Scholar 

  • Lamantia, A.-S. &; Rakic, P. (1990) Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. Journal of Comparative Neurology 291, 520–537.

    PubMed  Google Scholar 

  • Lammens, M. (2000) Neuronal migration disorders in man. European Journal of Morphology 38, 327–333.

    PubMed  Google Scholar 

  • Le Gros Clark, W. E. (1942) The cells of Meynert in the visual cortex of the monkey. Journal of Anatomy 74, 369–376.

    Google Scholar 

  • Le Gros Clark, W. E. (1959) The Antecedents of Man. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Marret, S., Mukendi, R., Gadisseux, J. F., Gressens, P. &; Evrard, P. (1995) Effect of ibotenate on brain development: An excitotoxic mouse model of microgyria and posthypoxic-like lesions. Journal of Neuropathology and Experimental Neurology 54, 358–370.

    PubMed  Google Scholar 

  • Martin, R. D. (1990) Primate Origins and Evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Mead, C. &; Conway, L. (1980) Introduction to VLSI Systems. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Mountcastle, V. (1998) Perceptual Neuroscience: The Cerebral Cortex. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nauta, W. J. H. &; Feirtag, M. (1986) Fundamental Neuroanatomy. New York: Freeman.

    Google Scholar 

  • Niewenhuys, R., Ten Donkelaar, H. &; Nicholson, C. (1998) The Central Nervous System of Vertebrates. Berlin: Springer.

    Google Scholar 

  • Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M. &; Hof, P. R. (1999) A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences USA 96, 5268–5273.

    Google Scholar 

  • Nimchinsky, E. A., Vogt, B. A., Morrison, J. H. &; Hof, P. R. (1995) Spindle neurons of the human anterior cingulate cortex. Journal of Comparative Neurology 355, 27–37.

    PubMed  Google Scholar 

  • O'Kusky, J. &; Colonnier, M. (1982)Alaminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology 210, 278–290.

    PubMed  Google Scholar 

  • Peters, A. &; Palay, S. L. (1991) The Fine Structure of the Nervous System: Neurons and Their Supporting Cells. 3rd edn. New York: Oxford University Press.

    Google Scholar 

  • Rakic, P. (1988) Defects of neuronal migration and the pathogenesis of cortical malformations. Progress in Brain Research 73, 15–37.

    PubMed  Google Scholar 

  • Rakic, P. (1995) A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neuroscience 18, 383–388.

    Google Scholar 

  • Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, N. &; Goldman-Rakic, P. (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235.

    PubMed  Google Scholar 

  • RamÓn Y Cajal, S. (1990) New Ideas on the Structure of the Nervous System in Man and Vertebrates. Cambridge, MA: MIT Press.

    Google Scholar 

  • Reep, R. L. &; O'Shea, T. J. (1990) Regional brain morphometry and lissencephaly in the Sirenia. Brain, Behavior and Evolution 35, 185–194.

    Google Scholar 

  • Rice, D. W. (1967) Cetaceans. In Recent Mammals of the World-A Synopsis of Families (edited by Anderson, S. &; Jones, J. K.) pp. 291–324. New York: Ronald Press.

    Google Scholar 

  • Ritchie, J. M. (1995) Physiology of axons. In The Axon: Structure, Function and Pathophysiology (edited by Waxman, S. G., Kocsis, J. D. &; Stys, P. K.) pp. 68–96. New York: Oxford University Press.

    Google Scholar 

  • Rivara, C.-B., Sherwood, C. C., Bouras, C. &; Hof, P. R. (2003) Stereologic characterization and spatial distribution patterns of Betz cells in human primary motor cortex. Anatomical Record 270A, 137–151.

    Google Scholar 

  • Sabatini, B. L. &; Regehr, W. G. (1999) Timing of synaptic transmission. Annual Review of Physiology 61, 521–542.

    PubMed  Google Scholar 

  • Scheibel, M. E. &; Scheibel, A. B. (1978) The dendritic structure of the human Betz cell. In Architectonics of the Cerebral Cortex (edited by Brazier, M. A. B. &; Pets, H.) pp. 43–57. New York: Raven Press.

    Google Scholar 

  • SchÜz, A. &; Demianenko, G. P. (1995) Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey. Journal für Hirnforschung 36, 113–122.

    Google Scholar 

  • SchÜz, A. &; Palm, G. (1989) Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology 286, 442–455.

    PubMed  Google Scholar 

  • SchÜz, A. &; Preissl, H. (1996) Basic connectivity of the cerebral cortex and some considerations on the corpus callosum. Neuroscience and Biobehavioral Reviews 20, 567–570.

    PubMed  Google Scholar 

  • Schwartzkroin, P. A. &; Walsh, C. A. (2000) Cortical malformations and epilepsy. Mental Retardation and Developmental Disabilities Research Reviews 6, 268–280.

    PubMed  Google Scholar 

  • Shepherd, G. M. (1990) The Synaptic Organization of the Brain. 3rd ed. New York: Oxford University Press.

    Google Scholar 

  • Sherwood, C. C., Lee, P. W. H., Rivara, C.-B., Holloway, R. L., Gilissen, E. P. E., Simmons, R. M. T., Hakeem, A., Allman, J. M., Erwin, J. M. &; Hof, P. R. (2003) Evolution of specialized pyramidal neurons in the primate motor and visual cortex. Brain, Behavior and Evolution 61, 28–44.

    Google Scholar 

  • Shultz, J. R. &; Wang, S. S.-H. (2001) How the neocortex got its folds: Ultrastructural parameters underlying macroscopic features. Society for Neuroscience Abstracts.

  • Smith, D. S., Niethammer, M., Ayala, R., Zhou, Y., Gambello, M. J., Wynshaw-Boris, A. &; Tsai, L. H. (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian LIS1. Nature Cell Biology 2, 767–775.

    PubMed  Google Scholar 

  • Stephan, H., Frahm, H. &; Baron, G. (1981)Newand revised data on volumes of brain structures in insectivores and primates. Folia Primatologica 35, 1–29.

    Google Scholar 

  • Swadlow, H. A. (2000) Information flow along neocortical axons. In Time and the Brain. Conceptual Advances in Brain Research (edited by Miller, R.) pp. 131–155. Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Swadlow, H. A. &; Waxman, S. G. (1976) Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Experimental Neurology 53, 128–150.

    PubMed  Google Scholar 

  • Thompson, D. W. (1942) On Growth and Form. Cambridge: The University Press.

    Google Scholar 

  • Tower, D. B. (1954) Structural and functional organization ofmammaliancerebral cortex: The correlation of neurone density with brain size. Journal of Comparative Neurology 101, 9–52.

    Google Scholar 

  • van Essen, D. C. (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318.

    PubMed  Google Scholar 

  • Volpe, J. J. (1981) Neurology of the Newborn. Philadelphia: Saunders.

    Google Scholar 

  • Watts, D. J. &; Strogatz, S. H. (1998) Collective dynamics of 'small-world' networks. Nature 393, 440–442.

    PubMed  Google Scholar 

  • Waxman, S. G. &; Swadlow, H. A. (1976) Ultrastructure of visual callosal axons in the rabbit. Experimental Neurology 53, 115–127.

    PubMed  Google Scholar 

  • Zhang, K. &; Sejnowski, T. J. (2000)Auniversal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences USA 97, 5621–5626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harrison, K.H., Hof, P.R. & Wang, S.SH. Scaling laws in the mammalian neocortex: Does form provide clues to function?. J Neurocytol 31, 289–298 (2002). https://doi.org/10.1023/A:1024178127195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024178127195

Keywords

  • White Matter
  • Cellular Level
  • Processing Speed
  • Quantitative Approach
  • Exceptional Case