Celestial Mechanics and Dynamical Astronomy

, Volume 86, Issue 2, pp 185–208

Geometric Derivation of the Delaunay Variables and Geometric Phases

  • Dong Eui Chang
  • Jerrold E. Marsden


We derive the classical Delaunay variables by finding a suitable symmetry action of the three torus T3 on the phase space of the Kepler problem, computing its associated momentum map and using the geometry associated with this structure. A central feature in this derivation is the identification of the mean anomaly as the angle variable for a symplectic S1 action on the union of the non-degenerate elliptic Kepler orbits. This approach is geometrically more natural than traditional ones such as directly solving Hamilton–Jacobi equations, or employing the Lagrange bracket. As an application of the new derivation, we give a singularity free treatment of the averaged J2-dynamics (the effect of the bulge of the Earth) in the Cartesian coordinates by making use of the fact that the averaged J2-Hamiltonian is a collective Hamiltonian of the T3 momentum map. We also use this geometric structure to identify the drifts in satellite orbits due to the J2 effect as geometric phases.

Kepler vector field derivation of variables orbits dynamics and phases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, R. and Marsden, J. E.: 1978, Foundations of Mechanics, 2nd edn, Addison-Wesley, Reading, MA.Google Scholar
  2. Arnold, V. I.: 1991, Dynamical Systems, Springer, New York, Vol. III.Google Scholar
  3. Born, M.: 1927, The Mechanics of the atom, G. Bells and Sons, Ltd, London.Google Scholar
  4. Broucke, R. A.: 1994, Numerical integration of periodic orbits in the main problem of artificial satellite theory, Celestial Mechanics and Dynamical Astronomy 58, 99-123.Google Scholar
  5. Brouwer, D. and Clemence, G. M.: 1961, Methods of Celestial Mechanics, Academic Press, New York.Google Scholar
  6. Chang, D. E., Chichka, D. F. and Marsden, J. E.: 2002, 'Lyapunov-based transfer between elliptic Keplerian orbits', Discrete Contin. Dyn. Syst. B 2, 57-67.Google Scholar
  7. Charlier, C. L.: 1927, Die Mechanik des Himmels, Bd.I, II,2nd edn, Walter de Gruyter, Berlin.Google Scholar
  8. Chobotov, V. A. (ed.): 1996, OrbitalMechanics, 2nd edn, AIAA Education Series, American Institute of Aeronautics and Astronautics, Inc., New York.Google Scholar
  9. Coffey, S. L., Depit, A. and Miller, B. R.: 1986, 'The critical inclination in artificial satellite theory', Cel. Mech., 39, 365-406.Google Scholar
  10. Cushman, R.: 1991, In: K. Jones et al. (eds), A Survey of Normalization Techniques Applied to Perturbed Keplerian Systems, Dynamics Reported, Springer, New York, Vol. 1.Google Scholar
  11. Cushman, R. H. and Bates, L. M.: 1997, Global Aspects of Classical Integrable Systems, Birkhüser. Boston.Google Scholar
  12. Delaunay, C.: 1860, Théorie du mouvement de la lune, Mem. 28 (1860); 29 (1867), Acad. Sci. France, Paris.Google Scholar
  13. Goldstein, H.: 1980, Classical Mechanics, 2nd edn, Addison-Wesley, Reading, MA.Google Scholar
  14. Kovalevsky, J.: 1967, Introduction to Celestial Mechanics, Springer, New York.Google Scholar
  15. Marsden, J. E., Misiolek, G., Perlmutter, M. and Ratiu, T.: 1998, Symplectic reduction for semidirect products and central extensions, Diff. Geom. Appl. 9, 173-212.Google Scholar
  16. Marsden, J. E., Montgomery, R. and Ratiu, T. S.: 1990, Reduction, Symmetry and Phases in Mechanics, Vol. 436 of Memoirs of the AMS, American Mathematical Society, Providence, RI.Google Scholar
  17. Marsden, J. E. and Ratiu, T. S.: 1999, Introduction to Mechanics and Symmetry, 2nd edn, Springer, New York.Google Scholar
  18. Marsden, J. E., Ratiu, T. S. and Scheurle, J.: 2000, Reduction theory and the Lagrange-Routh equations, J. Math. Phys. 41, 3379-3429.Google Scholar
  19. Marsden, J. E. and Weinstein, A.: 1974, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5, 121-130.Google Scholar
  20. Naber, G. L.: 1997, Topology, Geometry, and Gauge Fields: Foundations, Springer, New York.Google Scholar
  21. Vinti, J. P.: 1998, Orbital and Celestial Mechanics, AIAA, Virginia.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dong Eui Chang
    • 1
  • Jerrold E. Marsden
    • 2
  1. 1.Mechanical and Environmental EngineeringUniversity of CaliforniaSanta BarbaraU.S.A., e-mail
  2. 2.Control and Dynamical Systems 107-81California Institute of TechnologyPasadenaU.S.A., e-mail

Personalised recommendations