Skip to main content
Log in

Functional expression of arginine kinase improves recovery from pH stress of Escherichia coli

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Acid stress in Escherichia coli involves a complex resource- and energy-consuming response mechanism. By overexpression of arginine kinase from Limulus polyphemus in E. coli, we improved the recovery from a transient pH stress. While wild type E. coli resumed growth after a transient pH reduction to pH 3 for 1 h with a rate that was 25% lower than before the stress, the arginine kinase expressing strain continued to grow as rapidly as before. This effect is presumably caused by the physiological function of arginine kinase as a short term energy buffer in the form of phosphoarginine, but a pH-buffering effect cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol. Lett. 147: 173–180.

    Google Scholar 

  • Booth IR, Cash P, O'Byrne C (2002) Sensing and adapting to acid stress. Antonie van Leeuwenhoek 81: 33–42.

    Google Scholar 

  • Cakar ZP (2000) Metabolic engineering of yeast. Ph.D. Thesis, ETH, Zurich, Switzerland.

    Google Scholar 

  • Canonaco F, Schlattner U, Pruett PS, Wallimann T, Sauer U (2002) Functional expression of phosphagen kinase systems confers resistance to transient stresses in Saccharomyces cerevisiae by buffering the ATP pool. J. Biol. Chem. 277: 31303–31309.

    Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J. Bacteriol. 181: 3525–3535.

    Google Scholar 

  • Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63: 289–325.

    Google Scholar 

  • Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A (2001) Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 85: 175–185.

    Google Scholar 

  • Epstein W, Kim BS (1971) Potassium transport loci in Escherichia coli K-12. J. Bacteriol. 108: 639–644.

    Google Scholar 

  • Foster JW (1999) When protons attack: microbial strategies of acid adaptation. Curr. Opin. Microbiol. 2: 170–174.

    Google Scholar 

  • Grieshaber MK, Hardewig I, Kreutzer U, Portner HO (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev. Physiol. Biochem. Pharmacol. 125: 43–147.

    Google Scholar 

  • Kobayashi H, Suzuki T, Unemoto T (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J. Biol. Chem. 261: 627–630.

    Google Scholar 

  • Koretsky AP, Traxler BA (1989) The B isozyme of creatine kinase is active as a fusion protein in Escherichia coli: in vivo detection by 31P NMR. FEBS Lett. 243: 8–12.

    Google Scholar 

  • Noguchi M, Sawada T, Akazawa T (2001) ATP-regenerating system in the cilia of Paramecium caudatum. J. Exp. Biol. 204(Pt 6): 1063–1071.

    Google Scholar 

  • Pereira CA, Alonso GD, Paveto MC, Iribarren A, Cabanas ML, Torres HN, Flawia MM (2000) Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J. Biol. Chem. 275: 1495–1501.

    Google Scholar 

  • Pereira CA, Alonso GD, Torres HN, Flawia MM (2002) Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids. J. Eukaryot. Microbiol. 49: 82–85.

    Google Scholar 

  • Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K, Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679–6688.

    Google Scholar 

  • Strong SJ, Ellington WR (1995) Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues. Biochim. Biophys. Acta 1246: 197–200.

    Google Scholar 

  • Wallimann T (1994) Dissecting the role of creatine kinase. Curr. Biol. 1: 42–46.

    Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol. Rev. 80: 1107–1213.

    Google Scholar 

  • Zakharyan E, Trchounian A (2001) K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS Microbiol. Lett. 204: 61–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canonaco, F., Schlattner, U., Wallimann, T. et al. Functional expression of arginine kinase improves recovery from pH stress of Escherichia coli . Biotechnology Letters 25, 1013–1017 (2003). https://doi.org/10.1023/A:1024172518062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024172518062

Navigation