Skip to main content
Log in

Removal and recovery of copper via a galvanic cementation system Part I: Single-pass reactor

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A galvanic system for the removal of copper from aqueous solutions using a divided flow-through cell is proposed. The present study looks into the feasibility of removing copper from dilute electroplating rinse water and recovering it in metallic form by a galvanic cementation process. This process does not require an external supply of energy due to the spontaneous chemical reaction between the copper/iron couple. Therefore, this operation is attractive in reducing operating costs, especially when dealing with low ion concentrations and serves as an alternative to current wastewater treatments available. The performance of the proposed system was evaluated as a function of cathode potential, catholyte flow rates, initial copper(II) concentration and types of electrode materials used. Results have shown that the galvanic flow system can remove copper effectively below the maximum permissible level from simulated copper(II) solutions. For a sample of copper bearing rinse water with relatively low conductivity containing 74.2 mg L−1 copper, 81.2% removal of the copper was achieved using a reticulated vitreous carbon as cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Dillon, ‘In-Line Copper Recovery Technology’, MSc thesis (University of Minnesota, USA, 1999).

    Google Scholar 

  2. S. Skipton and D. Hay, ‘Drinking Water: Copper’, http:// www.ianr.unl.edu/pubs/Water/g1360.htm (1998).

  3. J.W. Patterson, ‘Wastewater Treatment Technology’ (Ann Arbor Science, Michigan, 1975), pp. 69–85.

    Google Scholar 

  4. M.R. Watson, ‘Pollution Control in Metal Finishing’ (Noyes Data Corporation, London, 1973), pp. 140–146.

    Google Scholar 

  5. D.J. Pickett, Processes for Extracting Metals from Effluents, in G. Kakabadse (Ed.), ‘Chemistry of Effluent Treatment’ (Applied Science, London, 1979), pp. 57–75.

    Google Scholar 

  6. R.P. Renz, T.R. Fritchley, J.J. Sun, E.J. Taylor, C.D. Zhou and P.O. Miller, ‘A discussion of engineering scale-up and beta testing of an in-process recycling system for treating plating rinsewater for PWB operations’, Proc. AESF SUR/FIN Annual International Technology Conference (1998), pp. 41–51.

  7. J.Y. Zee and J. Newman, J. Electrochem. Soc. 124 (1977) 706.

    Google Scholar 

  8. R.P. Tison, J. Electrochem. Soc. 128 (1981) 317.

    Google Scholar 

  9. R.C. Widner, M.F.B. Sousa and R. Bertazzoli, J. Appl. Electrochem. 28 (1998) 201.

    Google Scholar 

  10. D. Pletcher, ‘Industrial Electrochemistry’ (Chapman & Hall, New York, 1984).

    Google Scholar 

  11. I. Dalrymple, D. Gilroy, G. Sunderland and D. Walker, ‘Electrochemical Processes for Recovery and Effluent Treatment’, http://www.mtcsc.co.uk/network/idalrymple.pdf (2002).

  12. J.D. Genders and N.L. Weinberg, ‘Electrochemistry for A Cleaner Environment’ (Electrosynthesis Co., East Amherst, NY 1992).

    Google Scholar 

  13. K. Scott and E.M. Paton, Electrochim. Acta 38 (1993) 2181.

    Google Scholar 

  14. G.P. Kumar and K.I. Vasu, J. Electrochem. Soc. India 22 (1973) 5.

    Google Scholar 

  15. T.G. Prakash, S. Ilangovan and K.I. Vasu, J. Electrochem. Soc. India 27 (1978) 17.

    Google Scholar 

  16. G H. Sedahmed and M.A. Fawzy, Bull. Electrochem. 3 (1985) 281.

    Google Scholar 

  17. N.K. Jain, G.B. Viswanathan, S. Pragasam and T.V. Rajan, Indian J. Tech. 24 (1986) 80.

    Google Scholar 

  18. F.N. Bravo de Nahui, R.M. Hooper and A.A. Wragg, Chem. and Ind. Sept. (1986) 571.

  19. M.S.E. Abdo and G.H. Sedahmed, Energy Convers. Manage. 39 (1998) 943.

    Google Scholar 

  20. WasteWater Technology, ‘Technology Equipment for Wastewater Treatment’, http://www.canstar.net/members/wastewater/ (2000).

  21. J. Wang and H.D. Dewald, J. Electrochem. Soc. 130 (1983) 1814.

    Google Scholar 

  22. B.E. Conway, ‘Electrochemical approaches to small-scale wastewater purification’, in T.L. Rose, E. Rudd, O. Murphy and B.E. Conway, Proceedings of the symposium on ‘Water Purification by Photocatalytic, Photoelectrochemical and Electrochemical Processes’, San Francisco, CA, 1994 Vol. 94-19 (The Electrochemical Society, NJ, 1994), pp. 10–27.

    Google Scholar 

  23. M. Matlosz and J. Newman, J. Electrochem. Soc. 133 (1986) 1850.

    Google Scholar 

  24. E.J. Rudd, ‘Electrochemical approaches to water purification: a review’, in Proceedings, op. cit. [22], pp. 28–40.

  25. Y. Oren and A. Soffer, Electrochim. Acta 28 (1983) 1649.

    Google Scholar 

  26. P.H. Yiu, ‘Studies Using the Galvanic Reduction Process for Hexavalent Chromium in Wastewater’, Unpublished PhD thesis (Universiti Sains Malaysia, Malaysia, 2000).

    Google Scholar 

  27. R. Alkire and B. Gracon, J. Electrochem. Soc. 122 (1975) 1594.

    Google Scholar 

  28. A. Anagnostopoulos, D. Varsamiz, G. Kyriacou and K. Tzoanas, Gazz. Chim. Ital. 123 (1993) 61.

    Google Scholar 

  29. R. Carta, S. Palmas, A.M. Polcaro and G. Tola, J. Appl. Electrochem. 21 (1991) 793.

    Google Scholar 

  30. E.J. Podlaha and F.M. Fenton, J. Appl. Electrochem. 25 (1995) 299.

    Google Scholar 

  31. I.C. Agarwal, A.M. Rochon, H.D. Gesser and A.B. Sparling, Water Res. 18 (1984) 227.

    Google Scholar 

  32. N.V. Myung, M. Schewartz and K. Nobe, Plat. Surf. Finish. 87 (2000) 76.

    Google Scholar 

  33. D. Pletcher, I. Whyte, F.C. Walsh and J.P. Millington, J. Appl. Electrochem. 21 (1991) 659.

    Google Scholar 

  34. D. Simonsson, J. Appl. Electrochem. 14 (1984) 595

    Google Scholar 

  35. K. Kinoshita and S.C. Leach, J. Electrochem. Soc. 129 (1982) 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hor, Y., Mohamed, N. Removal and recovery of copper via a galvanic cementation system Part I: Single-pass reactor. Journal of Applied Electrochemistry 33, 279–285 (2003). https://doi.org/10.1023/A:1024154417482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024154417482

Navigation