Skip to main content
Log in

Origin of New Genes: Evidence from Experimental and Computational Analyses

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Exon shuffling is an essential molecular mechanism for the formation of new genes. Many cases of exon shuffling have been reported in vertebrate genes. These discoveries revealed the importance of exon shuffling in the origin of new genes. However, only a few cases of exon shuffling were reported from plants and invertebrates, which gave rise to the assertion that the intron-mediated recombination mechanism originated very recently. We focused on the origin of new genes by exon shuffling and retroposition. We will first summarize our experimental work, which revealed four new genes in Drosophila, plants, and humans. These genes are 106 to 108 million years old. The recency of these genes allows us to directly examine the origin and evolution of genes in detail. These observations show firstly the importance of exon shuffling and retroposition in the rapid creation of new gene structures. They also show that the resultant chimerical structures appearing as mosaic proteins or as retroposed coding structures with novel regulatory systems, often confer novel functions. Furthermore, these newly created genes appear to have been governed by positive Darwinian selection throughout their history, with rapid changes of amino acid sequence and gene structure in very short periods of evolution. We further analyzed the distribution of intron phases in three non-vertebrate species, Drosophila melanogaster, Caenorhabditis elegans, and Arabidosis thaliana, as inferred from their genome sequences. As in the case of vertebrate genes, we found that intron phases in these species are unevenly distributed with an excess of phase zero introns and a significant excess of symmetric exons. Both findings are consistent with the requirements for the molecular process of exon shuffling. Thus, these non-vertebrate genomes may have also been strongly impacted by exon shuffling in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E. Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, et al., 2000. The genome sequence of Drosophila melanogaster. Science 287(5461): 2185-2195.

    Google Scholar 

  • AGI (The Arabidopsis Genome Initiative), 2000. Analysis of the genome sequence of the flowering plant. Nature 408: 796-815.

    Google Scholar 

  • Attwood, T.K., 2000. The Babel of bioinformatics. Science 290: 471-473.

    PubMed  Google Scholar 

  • Begun, D.J., 1997. Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics 145: 375-382.

    PubMed  Google Scholar 

  • Betrán, E. & M. Long, 2002. Expansion of genome coding regions by acquisition of new genes. Genetica 115: 65-80.

    PubMed  Google Scholar 

  • Betrán, E., W. Wang, L. Jin & M. Long, 2002. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol. 19: 654-663.

    PubMed  Google Scholar 

  • Boeke, J.D. & O.K. Pickeral, 1999. Retroshuffling the genomic deck. Nature 398: 108-109, 111.

    PubMed  Google Scholar 

  • Brookfield, J.F. & P.M. Sharp, 1994. Neutralism and selectionism face up to DNA data. Trends Genet. 10: 109-111.

    PubMed  Google Scholar 

  • Brosius, J., 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115-134.

    PubMed  Google Scholar 

  • Brosius, J., 2003. The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118: 99-115.

    PubMed  Google Scholar 

  • Burks, C., M.J. Cinkosky, P. Gilna, J.E. Hayden, Y. Abe, E.J. Atencio, S. Barnhouse, D. Benton, C.A. Buenafe & K.E. Cumella, 1990. GenBank: current status and future directions. Meth. Enzymol. 183: 3-22.

    PubMed  Google Scholar 

  • Cerff, R., 1995. The chimeric nature of nuclear genoms and the antiquity of introns as demonstrated by the GAPDH gene system, pp. 205-228 in Tracing Biological Evolution in Protein and Gene Structures, edited by M. Go & P. Schimmel. Elsevier, Amsterdam.

    Google Scholar 

  • CESC (The C. elegans Sequencing Consortium), 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012-2018.

    Google Scholar 

  • Chen, J.J., B.J. Janssen, A. Williams & N. Sinha, 1997. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9: 1289-1304.

    PubMed  Google Scholar 

  • De Souza, S.J., M. Long, R.J. Klein, S. Roy, S. Lin & W. Gilbert, 1998. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA 95: 5094-5099.

    PubMed  Google Scholar 

  • De Souza, S.J., M. Long, L. Schoenbach, S.W. Roy & W. Gilbert, 1996. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93: 14632-14636.

    PubMed  Google Scholar 

  • Dierick, H.A., J.F.B. Mercer & T.W. Glover, 1997. A phosphoglycerate mutase brain isoform (PGAM1) pseudogene is localized within the human Menkes disease gene (ATP7A). Gene 198: 37-41.

    PubMed  Google Scholar 

  • Domon, C. & A. Steinmetz, 1994. Exon shuffling in anther-specific genes from sunflower. Mol. Gen. Genet. 244: 312-317.

    PubMed  Google Scholar 

  • Dorit, R.L., L. Schoenbach & W. Gilbert, 1991. How big is the universe of exons? Science 250: 1377-1382.

    Google Scholar 

  • Eddy, S.R., 2001. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2: 919-929.

    PubMed  Google Scholar 

  • Fedorov, A., L. Fedorova, V. Starshenko, V. Filatov & E. Grigor'ev, 1998. Influence of exon duplication on intron and exon phase distribution. J. Mol. Evol. 46: 263-271.

    PubMed  Google Scholar 

  • Fedorov, A., G. Suboch, M. Bujakov & L. Fedorova, 1992. Analysis of nonuniformity in intron phase distribution. Nucl. Acids Res. 20(10): 2553-2557.

    PubMed  Google Scholar 

  • Fraser, C.M., J.D. Gocayne, O. White, M.D. Adams, R.A. Clayton, R.D. Fleischmann et al., 1995. The minimal gene complement of Mycoplasma. Science 270: 397-403.

    Google Scholar 

  • Gilbert, W., 1978. Why gene in pieces? Nature 271(5645): 501.

    PubMed  Google Scholar 

  • Gilbert, W., 1987. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52: 901-905.

    PubMed  Google Scholar 

  • Gilbert, W., S.J. de Souza & M. Long, 1997. Origin of genes. Proc. Natl. Acad. Sci. USA 94: 7698-7703.

    PubMed  Google Scholar 

  • Goodman, M., C.A. Porter, J. Czelusniak, S.L. Page, H. Schneider, J. Shoshani, G. Gunnell & C.P. Groves, 1998. Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol. Phyl. Evol. 9: 585-598.

    Article  Google Scholar 

  • Grisolia, S. & B.K. Joyce, 1959. Distribution of two types of phosphoglyceric acid mutase, diphosphoglycerate mutase and D-2, 3-dipphosphoglyceric acid. J. Biol. Chem. 234, 6: 1335-1337.

    PubMed  Google Scholar 

  • Grisolia, S. & J. Carreras, 1975. Phosphoglycerate mutase from Yeast, chicken, breast muscle and kidney (2,3-PGA-dependent). Meth. Enzymol. 42: 435-450.

    PubMed  Google Scholar 

  • Gu, Z., A. Cavalcanti, F.C. Chen, P. Bouman & W.H. Li, 2002. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol. Biol. Evol. 19: 256-262.

    PubMed  Google Scholar 

  • Himmelreich, R., H. Hilbert, H. Plagens, E. Pirkl, B.C. Li & R. Herrmann, 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae Nucl. Acids Res. 24: 4420-4449.

    PubMed  Google Scholar 

  • Horowitz, D.S. & A.R. Krainer, 1994. Mechanisms for selecting 5′ splice sites in mammalian pre-mRNA splicing. Trends Genet. 10: 100-106.

    PubMed  Google Scholar 

  • Jeffs, P. & M. Ashburner, 1991. Processed pseudogenes in Drosophila. Proc. R. Soc. Lond. B. 244: 151-159.

    PubMed  Google Scholar 

  • Kaessmann, H., S. Zöllner, A. Nekrutenko & W.H. Li, 2002. Signatures of domain shuffling in the human genome. Genome Res. 12: 1642-1650.

    PubMed  Google Scholar 

  • Lander, et al., 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921.

    PubMed  Google Scholar 

  • Langley, C.H., E. Montgomery & W.F. Quattlebaum, 1982. Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci. USA 79: 5631-5635.

    PubMed  Google Scholar 

  • Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11: 673-680.

    PubMed  Google Scholar 

  • Long, M. & M. Deutsch, 1999. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol. 16: 1528-1534.

    PubMed  Google Scholar 

  • Long, M., W. Wang & J. Zhang, 1999. Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. Gene 238: 135-141.

    PubMed  Google Scholar 

  • Long, M. & C. Rosenberg, 2000. Testing the “proto-splice sites” model of intron origin: evidence from analysis of intron phase correlations. Mol. Biol. Evol. 17: 1789-1796.

    PubMed  Google Scholar 

  • Long, M., C. Rosenberg & W. Gilbert, 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92(26): 12495-12499.

    PubMed  Google Scholar 

  • Long, M., S.J. de Souza & W. Gilbert, 1995. Evolution of intron/exon structure of eukaryotic genes. Curr. Opin. Genet. Dev. 5: 774-778.

    PubMed  Google Scholar 

  • Long, M., S.J. de Souza, C. Rosenberg & W. Gilbert, 1996. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc. Natl. Acad. Sci. USA 93: 7727-7731.

    PubMed  Google Scholar 

  • Long, M., S.J. de Souza, C. Rosenberg & W. Gilbert, 1998. Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis. Proc. Natl. Acad. Sci. USA 95: 219-223.

    PubMed  Google Scholar 

  • Long, M. & C.H. Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91-95.

    PubMed  Google Scholar 

  • Lynch, M., 2002. Intron evolution as a population-genetic process. Proc. Natl. Acad. Sci. USA 99: 6118-6123.

    PubMed  Google Scholar 

  • Nugent, J.M. & J.D. Palmer, 1991. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66: 473-481.

    Article  PubMed  Google Scholar 

  • Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Hartl, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572-575.

    PubMed  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, New York.

    Google Scholar 

  • Palmer, J.D., 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19: 325-354.

    PubMed  Google Scholar 

  • Patthy, L., 1987. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett. 214: 1-7.

    PubMed  Google Scholar 

  • Patthy, L., 1991. Modular exchange principles in proteins. Curr. Opin. Struct. Biol. 1: 351-361.

    Google Scholar 

  • Patthy, L., 1995. Protein Evolution by Exon-shuffling. Molecular biology intelligence unit, edited by R.G. Landes. Springer, Austin, TX.

    Google Scholar 

  • Pearson, W.R., 1994. Using the FASTA program to search protein and DNA sequence databases. Meth. Mol. Biol. 24: 307-331.

    Google Scholar 

  • Reed, R., 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6: 215-220.

    PubMed  Google Scholar 

  • Roise, D., S.J. Horvath, J.M. Tomich, J.H. Richards & G. Schatz, 1986. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5: 1327-1334.

    PubMed  Google Scholar 

  • Rubin, G.M., M.D. Yandell, J.R. Wortman, G.L. Gabor Miklos, C.R. Nelson, I.K. Hariharan et al., 2000. Comparative genomics of the eukaryotes. Science 287: 2204-2215.

    Google Scholar 

  • Schatz, G. & B. Dobberstein, 1996. Common principles of protein translocation across membranes. Science 271: 1519-1526.

    PubMed  Google Scholar 

  • Stoltzfus, A., J.M. Logsdon Jr., J.D. Palmer & W.F. Doolittle, 1997. Intron “sliding” and the diversity of intron positions. Proc. Natl. Acad. Sci. USA 94: 10739-10744.

    PubMed  Google Scholar 

  • Venter, J.C. et al., 2001. The sequence of the human genome. Science 291: 1304-1351.

    Google Scholar 

  • Wang, W., J. Zhang, C. Alvarez, A. Llopart & M. Long, 2000. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17: 1294-1301.

    PubMed  Google Scholar 

  • Wang, W., F.G. Brunet, E. Nevo & M. Long, 2002a. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99: 4448-4453.

    PubMed  Google Scholar 

  • Wang, W., K. Thornton, A. Berry & M. Long, 2002b. Nucleotide variation along the Drosophila melanogaster fourth chromosome. Science 295: 134-137.

    PubMed  Google Scholar 

  • Wegener, S. & U.K. Schmitz, 1993. The presequence of cytochrome c1 from potato mitochondria is encoded on four exons. Curr. Genet. 24: 256-259.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, M., Deutsch, M., Wang, W. et al. Origin of New Genes: Evidence from Experimental and Computational Analyses. Genetica 118, 171–182 (2003). https://doi.org/10.1023/A:1024153609285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024153609285

Navigation