Skip to main content
Log in

Computer-Aided Simulation of Porous Electrodes of a Filled-up Type

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the paper, computer-aided simulation of porous electrodes of a filled-up type is done using two-dimensional lattices as an example. The attention is mainly focused on the simulation of porous electron-conducting substrates that are required to put the catalyst particles on. The principal parameter of the system is the share of the electron-conducting particles of the substrate. Calculated are the share of the electron-conducting particles of the substrate (a conducting cluster), the distribution of this quantity over the electrode thickness, and the number of exits made by a conducting cluster onto the rear surface of the electrode. The notion of transparency is introduced. The perimeter of a conducting cluster is determined. The number of active particles of a catalyst is found out. Two versions of the electrode functioning are investigated for catalysts-enzymes. In one version the electrochemical process proceeds no matter the position of the enzyme molecules. In the other, the electrochemical process takes place provided certain conditions of contact between enzyme molecules and a conducting cluster are ensured. Established is the region of optimum concentrations of components at which the electrochemical activity of the electrode is maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  2. Fasman, A.B. and Sokol'skii, D.V., Struktura i fizikokhimicheskie svoistva skeletnykh katalizatorov (The Structure and Physicochemical Properties of Skeleton Catalysts), Alma-Ata: Nauka, 1968.

    Google Scholar 

  3. Chirkov, Yu.G., Doctoral (Chem.) Dissertation, Moscow: Frumkin Institute of Electrochemistry, Russian Academy of Sciences, 1974.

  4. Chirkov, Yu.G., Elektrokhimiya, 1974, vol. 10, p. 1804; 1975, vol. 11, pp. 43, 50, 195, 403, 544.

    Google Scholar 

  5. Chirkov, Yu.G. and Chizmadzhev, Yu.A., Itogi Nauki Tekh., Ser.: Elektrokhimiya, 1974, vol. 9, p. 5.

    Google Scholar 

  6. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Kinetika slozhnykh elektrokhimicheskikh reaktsii (The Kinetics of Complex Electrochemical Reactions), Kazarinov, V.E., Ed., Moscow: Nauka, 1981, p. 240.

    Google Scholar 

  7. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Comprehensive Treatise of Electrochemistry, Yeager, E., Bockris, J.O'M., Conway, B.E., and Sarangapani, S., Eds., New York: Plenum, 1983, vol. 6, p. 356.

    Google Scholar 

  8. Pakhomov, V.P. and Fateev, V.N., Elektrolizery vody s tverdym polimernym elektrolitom (Water Electrolyzes Based on Solid Polymer Electrolytes), Moscow: Kurchatov Inst. Atom. Energy, 1990.

    Google Scholar 

  9. Elektrokhimiya polimerov (The Electrochemistry of Polymers), Tarasevich, M.R. and Khrushcheva, E.I., Eds., Moscow: Nauka, 1990.

    Google Scholar 

  10. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 1994, vol. 30, p. 1428.

    Google Scholar 

  11. Chirkov, Yu.G., Elektrokhimiya, 1997, vol. 33, p. 52.

    Google Scholar 

  12. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 1998, vol. 34, p. 1010.

    Google Scholar 

  13. Srinivasan, S., Ticianelli, E.A., Derouin, C.R., and Redondo, A., J. Power Sources, 1988, vol. 22, p. 359.

    Google Scholar 

  14. Wilson, M.S. and Gottesfeld, S., J. Appl. Electrochem., 1992, vol. 22, p. 1.

    Google Scholar 

  15. Wilson, M.S. and Gottesfeld, S., J. Electrochem. Soc., 1992, vol. 139, p. L28.

    Google Scholar 

  16. Uchida, M., Aoyama, Y., Eda, X., and Ohta, A., J. Electrochem. Soc., 1995, vol. 142, p. 463.

    Google Scholar 

  17. Lemons, R., J. Power Sources, 1990, vol. 29, p. 251.

    Google Scholar 

  18. Escribano, S. and Aldebert, P., Solid State Ionics, 1995, vol. 77, p. 318.

    Google Scholar 

  19. Bolwin, K., Gulzow, E., Bevers, D., and Schnurnberger, W., Solid State Ionics, 1995, vol. 77, p. 324.

    Google Scholar 

  20. Wilson, M.S., Valerio, J.A., and Gottesfeld, S., Electrochim. Acta, 1995, vol. 40, p. 355.

    Google Scholar 

  21. Wilson, M.S., DeCaro, D., Zawodzinski, C., and Gottesfeld, S., Abstracts of Papers, 192nd Meet. Electrochem. Soc., 1997, vol. 97-2, p. 72.

    Google Scholar 

  22. Gottesfeld, S. and Zawodzinski, T.A., in Advances in Electrochemical Science and Engineering, Alkire, R.C., Gerischer, H., Kolb, D.M., and Tobias, C.N.V., Eds., Weinheim: Wiley, 1997, vol. 5, p. 195.

    Google Scholar 

  23. Eikerling, M. and Kornyshev, A.A., J. Electroanal. Chem., 1998, vol. 453, p. 89.

    Google Scholar 

  24. Carrette, L., Friedrich, K.A., and Stimming, U., Chem. Phys. Chem., 2000, vol. 1, p. 162.

    Google Scholar 

  25. Haufe, S. and Stimming, U., J. Membr. Sci., 2001, vol. 185, p. 95.

    Google Scholar 

  26. Carrette, L., Friedrich, K.A., and Stimming, U., Fuel Cells, 2001, vol. 1, p. 5.

    Google Scholar 

  27. Broadbent, S.R. and Hammersley, J.M., Proc. Camb. Phil. Soc., 1957, vol. 53, p. 629.

    Google Scholar 

  28. Shante, V.K.S. and Kirkpatrick, S., Adv. Phys., 1971, vol. 20, p. 325.

    Google Scholar 

  29. Phase Transition and Critical Phenomena, Domb, C. and Green, M.S.L., Eds., New York: Academic, 1972, vol. 2, p. 208.

    Google Scholar 

  30. Shklovskii, B.I. and Efros, A.L., Usp. Fiz. Nauk, 1975, vol. 117, p. 401.

    Google Scholar 

  31. Chirkov, Yu.G., Elektrokhimiya, 1976, vol. 12, pp. 889, 895, 1019; 1977, vol. 13, pp. 1026, 1167, 1304, 1617; 1978, vol. 14, p. 903.

    Google Scholar 

  32. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 1977, vol. 13, p. 1850.

    Google Scholar 

  33. Stauffer, D., Phys. Rept., 1979, vol. 54, p. 1.

    Google Scholar 

  34. Shklovskii, B.I. and Efros, A.L., Elektricheskie svoistva legirovannykh poluprovodnikov (Electrical Properties of Doped Semiconductors), Moscow: Nauka, 1979.

    Google Scholar 

  35. Essam, J.W., Rep. Prog. Phys., 1980, vol. 43, p. 833.

    Google Scholar 

  36. Efros, A.L., Fizika i geometriya besporyadka (The Physics and Geometry of Disorder), Moscow: Nauka, 1982.

    Google Scholar 

  37. Percolation Structures and Processes, Deutscher, G., Zallen, R., and Adler, J., Eds., Bristol: Hilger, 1983.

    Google Scholar 

  38. Zallen, R., The Physics of Amorphous Solids, New York: Wiley, 1983.

    Google Scholar 

  39. Chirkov, Yu.G., in Matematicheskie metody v zadachakh petrofiziki i korrelyatsii (Mathematical Methods in Petrophysics and Correlation), Moscow: Nauka, 1983, p. 39.

    Google Scholar 

  40. Stauffer, D., Introduction to Percolation Theory, London: Taylor & Francis, 1985.

    Google Scholar 

  41. Sokolov, I.M., Usp. Fiz. Nauk, 1986, vol. 150, p. 221.

    Google Scholar 

  42. Kesten, H., Percolation Theory for Mathematicians, Boston: Birkhauser, 1982.

    Google Scholar 

  43. Mason, G., in Characterization of Porous Solids, Amsterdam: Elsevier, 1988, vol. 39, p. 323.

    Google Scholar 

  44. Isichenko, M.B., Rev. Mod. Phys., 1992, vol. 64, p. 961.

    Google Scholar 

  45. Stauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor & Francis, 1994.

    Google Scholar 

  46. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 1980, vol. 16, p. 1670; 1981, vol. 17, pp. 803, 1123; 1983, vol. 19, p. 179.

    Google Scholar 

  47. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 1980, vol. 16, p. 1835; 1981, vol. 17, p. 110.

    Google Scholar 

  48. Chirkov, Yu.G., Rostokin, V.I., and Rusakov, V.A., Elektrokhimiya, 1983, vol. 19, p. 828.

    Google Scholar 

  49. Chirkov, Yu.G., in Matematicheskie metody v zadachakh petrofiziki i korrelyatsii (Mathematical Methods in Petrophysics and Correlation), Moscow: Nauka, 1983, p. 46.

    Google Scholar 

  50. Chernenko, A.A., Elektrokhimiya, 1999, vol. 35, p. 1477.

    Google Scholar 

  51. Chirkov, Yu.G., Elektrokhimiya, 1999, vol. 35, p. 1449.

    Google Scholar 

  52. Immobilizovannye fermenty (Immobilized Enzymes), Berezin, I.V., Antonov, V.K., and Martinek, K., Eds., Moscow: Mosk. Gos. Univ., 1976, vols. 1, 2.

    Google Scholar 

  53. Tarasevich, M.R. and Radyushkina, K.A., Kataliz i elektrokataliz metalloporfirinami (The Catalysis and Electrocatalysis with Metal Porphyrins), Moscow: Nauka, 1982.

    Google Scholar 

  54. Tarasevich, M.R., Radyushkina, K.A., and Bogdanovskaya, V.A., Elektrokhimiya porfirinov (The Electrochemistry of Porphyrins), Moscow: Nauka, 1991.

    Google Scholar 

  55. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (The Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Computer-Aided Simulation of Porous Electrodes of a Filled-up Type. Russian Journal of Electrochemistry 39, 622–631 (2003). https://doi.org/10.1023/A:1024153227628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024153227628

Keywords

Navigation