Advertisement

Genetica

, Volume 118, Issue 2–3, pp 143–156 | Cite as

The EBG System of E. coli: Origin and Evolution of a Novel β-Galactosidase for the Metabolism of Lactose

  • Barry G. Hall
Article

Abstract

The EBG system of E. coli has served as a model for the evolution of novel functions. This paper reviews the experimental evolution of the catabolism of β-galactoside sugars in strains of E. coli that carry deletions of the classical lacZ β-galactosidase gene. Evolution of the ebgA encoded Ebg β-galactosidase for an expanded substrate range, evolution of the ebgR encoded Ebg repressor for sensitivity to an expanded range of inducers, the amino acid replacements responsible for those changes, and the evolutionary potential of the system are discussed. The EBG system has also served as a model for studying the detailed catalytic consequences of experimental evolution at the physical–chemical level. The analysis of free-energy profiles for the wildtype and all of the various evolved Ebg enzymes has permitted rejection of the Albery–Knowles hypothesis that relates likely changes in free-energy profiles to evolutionary change.

enzyme catalysis evolutionary potential experimental evolution predicting evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albery, W.J. & J.R. Knowles, 1976. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15: 5631-5640.PubMedGoogle Scholar
  2. Bennet, A.J. & M.L. Sinnott, 1986. Complete kinetic isotope effect description of transition states for acid-catalyzed hydrolyses of methyl α-and β-glucopyranosides. J. Am. Chem. Soc. 108: 7287-7294.Google Scholar
  3. Burton, J. & M.L. Sinnott, 1983. Catalytic consequences of experimental evolution. Part 1. Catalysis by the wild-type second β-galactosidase (ebgo) of Escherichia coli: a comparison with the lacZ enzyme. J. Chem. Soc. Perkin Trans. II: 359-364.Google Scholar
  4. Calugaru, S.V., B.G. Hall & M.L. Sinnott, 1995. Catalysis by the large subunit of the second β-galactosidase of Escherichia coli in the absence of the small subunit. Biochem. J. 312: 281-286.PubMedGoogle Scholar
  5. Calugaru, S.V., S. Krishnan, C.J. Chany II, B.G. Hall & M.L. Sinnott, 1997. Larger increases in sensitivity to paracatalytic inactivation than in catalytic competence during experimental evolution of the second β galactosidase of Escherichia coli. Biochem. J. 325: 117-121.PubMedGoogle Scholar
  6. Campbell, J., J. Lengyel & J. Langridge, 1973. Evolution of a second gene for β-galactosidase in Escherichia coli. Proc. Nat. Acad. Sci. USA 70: 1841-1845.PubMedGoogle Scholar
  7. Dykhuizen, D.E., A.M. Dean & D.L. Hartl, 1987. Metabolic flux and fitness. Genetics 115: 25-31.PubMedGoogle Scholar
  8. Elliott, A.C., S. K, M.L. Sinnott, P.J. Smith, J. Bommuswamy, Z. Guo, B.G. Hall & Y. Zhang, 1992. The catalytic consequences of experimental evolution. Studies on the subunit structure of second (ebg) β-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions. Biochem. J. 282: 155-164.PubMedGoogle Scholar
  9. Hall, B.G., 1976. Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebgo) and evolved (ebg+) enzymes. J. Mol. Biol. 107: 71-84.PubMedGoogle Scholar
  10. Hall, B.G., 1978a. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for EBG enzyme in E. coli. Genetics 89: 453-465.PubMedGoogle Scholar
  11. Hall, B.G., 1978b. Regulation of newly evolved enzymes. IV Directed evolution of the ebg repressor. Genetics 90: 673-691.PubMedGoogle Scholar
  12. Hall, B.G., 1981. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry 20: 4042-4049.PubMedGoogle Scholar
  13. Hall, B.G., 1982a. Evolution of a regulated operon in the laboratory. Genetics 101: 335-344.PubMedGoogle Scholar
  14. Hall, B.G., 1982b. Transgalactosylation activity of ebg β-galactosidase synthesizes allolactose from lactose. J. Bacteriol. 150: 132-140.PubMedGoogle Scholar
  15. Hall, B.G., 1995a. Adaptive mutations in E. coli as a model for the multiple-mutational origins of tumors. Proc. Nat. Acad. Sci. USA 92: 5669-5673.PubMedGoogle Scholar
  16. Hall, B.G., 1995b. Evolutionary potential of the ebgA gene. Mol. Biol. Evol. 12: 514-517.PubMedGoogle Scholar
  17. Hall, B.G., 1997. On the specificity of adaptive mutations. Genetics 145: 39-44.PubMedGoogle Scholar
  18. Hall, B.G., 1999a. Experimental evolution of Ebg enzyme provides clues about the evolution of catalysis and to evolutionary potential. FEMS Microbiol. Lett. 174: 1-8.PubMedGoogle Scholar
  19. Hall, B.G., 1999b. The spectra of spontaneous growth-dependent and adaptive mutations in ebgR. J. Bacteriol. 181: 1149-1155.PubMedGoogle Scholar
  20. Hall, B.G., 1999c. Toward an understanding of evolutionary potential. FEMS Microbiol. Lett. 178: 1-6.Google Scholar
  21. Hall, B.G., 2001a. Phylogenetic Trees Made Easy: A How-To Manual for Molecular Biologists. Sinauer Assoc., Sunderland, MA.Google Scholar
  22. Hall, B.G., 2001b. Predicting evolutionary potential. I. Predicting the evolution of a lactose-PTS system in Escherichia coli. Mol. Biol. Evol. 18: 1389-1400.PubMedGoogle Scholar
  23. Hall, B.G. & N.D. Clarke, 1977. Regulation of newly evolved enzymes. III. Evolution of the ebg repressor during selection for enhanced lactase activity. Genetics 85: 193-201.PubMedGoogle Scholar
  24. Hall, B.G. & D.L. Hartl, 1974. Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli. Genetics 76: 391-400.PubMedGoogle Scholar
  25. Hall, B.G. & D.L. Hartl, 1975. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics 81: 427-435.PubMedGoogle Scholar
  26. Hall, B.G. & H.S. Malik, 1998. Determining the evolutionary potential of a gene. Mol. Biol. Evol. 15: 514-517.Google Scholar
  27. Hall, B.G. & T. Zuzel, 1980. Evolution of a new enzymatic function by recombination within a gene. Proc. Natl. Acad. Sci. USA 77: 3529-3533.PubMedGoogle Scholar
  28. Hall, B.G., P.W. Betts & J.C. Wootton, 1989. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics 123: 635-648.PubMedGoogle Scholar
  29. Hall, B.G., M. Murray, S. Osborne & M.L. Sinnott, 1983. The catalytic consequences of experimental evolution. Part III. Construction of reaction profiles for hydrolysis of lactose by ebgo, ebga, and ebgb enzymes via measurements of the enzyme-catalyzed exchange of galactose-1-18O by 13C NMR spectroscopy. J. Chem. Soc. Perkin Trans. II: 1595-1598.Google Scholar
  30. Hartl, D.L. & B.G. Hall, 1974. A second naturally occurring β-galactosidase in E. coli. Nature 248: 152-153.PubMedGoogle Scholar
  31. Huelsenbeck, J.P. & F. Ronquist, 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.PubMedGoogle Scholar
  32. Jobe, A. & S. Bourgeois, 1974. lac repressor-operator interactions. VI. The natural inducer of the lac operon. J. Mol. Biol. 69: 397-408.Google Scholar
  33. Krishnan, S., B.G. Hall & M.L. Sinnott, 1995. Catalytic consequences of experimental evolution: catalysis by a 'thirdgeneration' evolvant of the second β-galactosidase of Escherichia cold, ebgabcde, and by ebgabcd, a 'second-generation' evolvant containing two supposedly 'kinetically silent' mutations. Biochem. J. 312: 971-977.PubMedGoogle Scholar
  34. Li, B.F.L., S. Osborne & M.L. Sinnott, 1983. Catalytic consequences of experimental evolution. Part 2. Rate-limiting degalactosylation in the hydrolysis of Aryl β-Dgalactopyranosides by the experimental evolvants ebga and ebgb. J. Chem. Soc. Perkin Trans. II: 365-369.Google Scholar
  35. Li, B.F.L., D. Holdup, C.A. Morton & M. Sinnott, 1989. The catalytic consequences of experimental evolution. Transition state structure during catalysis by the evolved β-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event. Biochem. J. 260: 109-114.PubMedGoogle Scholar
  36. Mau, B. & M. Newton, 1997. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. J. Comput. Graphical Statist. 6: 122-131.Google Scholar
  37. Mau, B., M. Newton & B. Larget, 1999. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1-12.PubMedGoogle Scholar
  38. Rannala, B. & Z.H. Yang, 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43: 304-311.PubMedGoogle Scholar
  39. Rolseth, S.J., V.A. Fried & B.G. Hall, 1980. A mutant ebg enzyme that converts lactose into an inducer of the lac operon. J. Bacteriol. 142: 1036-1039.PubMedGoogle Scholar
  40. Sanger, F., A.R. Coulson, B.G. Barrell, A.J.H. Smith & B.A. Roe, 1980. Cloning in single stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143: 161-178.PubMedGoogle Scholar
  41. Srinivasan, K., B.G. Hall & M.L. Sinnott, 1995. The catalytic consequences of experimental evolution. Catalysis by a 'third generation' evolvant of the second β-galactosidase of Escherichia coli, Ebgabcde and Ebgabcd, a 'second generation' evolvant containing two supposedly 'kinetically silent' mutations. Biochem. J. 312: 971-977.PubMedGoogle Scholar
  42. Srinivasan, K., A. Konstantindis, M.L. Sinnott & B.G. Hall, 1993. Large changes of transition state structure during experimental evolution of an enzyme. Biochem. J. 291: 15-17.PubMedGoogle Scholar
  43. Stokes, H.W. & B.G. Hall, 1981. Topological repression of gene activity by a transposable element. Proc. Nat. Acad. Sci. USA 81: 6115-6119.Google Scholar
  44. Stokes, H.W. & B.G. Hall, 1985. Sequence of the ebgR gene of Escherichia coli: evidence that the EBG and LAC operons are descended from a common ancestor. Mol. Biol. Evol. 2: 4478-483.Google Scholar
  45. Stokes, H.W., P.W. Betts & B.G. Hall, 1985. Sequence of the ebgA gene of Escherichia coli: comparison with the lacZ gene. Mol. Biol. Evol. 2: 469-477.PubMedGoogle Scholar
  46. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin & D.G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid. Res. 25: 4876-4882.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Barry G. Hall
    • 1
  1. 1.Biology DepartmentUniversity of RochesterRochesterUSA

Personalised recommendations