Skip to main content
Log in

Evaluating a Model of Evaporation and Transpiration with Observations in a Partially Wet Douglas-Fir Forest

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The Penman–Monteith equation is extended to describe evaporation of intercepted rain, transpiration and the interaction between these processes in a single explicit function. This single-layer model simulates the effects of heat exchange, stomatal blocking and changed humidity deficit close to the canopy as a function of canopywater storage. Evaporation depends on the distribution of water over the canopy and the energy exchange between wet and dry parts. Transpiration depends on the dry canopy surface resistance that is described with a Jarvis-type response. The explicit functions obtained for water vapour fluxes facilitate a straightforward identificationof the various processes. Canopy water storage amounts and xylem sapflow were measured simultaneously during drying episodes after rainfall in a dense, partially wet, Douglas-fir forest. Estimates of evaporation and transpiration rates are derived from these observations. The analysis shows that evaporation induced transpirationreduction is mainly caused by energy consumption. Changes in water vapour deficit have a minor effect due to a compensating stomatal reaction. The remaining difference between observed and modelled transpiration reduction can be attributed to partial blocking of stomata by the water layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barr, A. G. and Gillespie, T. J.: 1987, 'Maximum Wetness Duration for Water Drops on Leaves in the Field', Agric. For. Meteorol. 41, 267-274.

    Google Scholar 

  • Beljaars, A. C. M. and Viterbo, P.: 1994, 'The Sensitivity of Winter Evaporation to the Formulation of Aerodynamic Resistance in the ECMWF Model', Boundary-Layer Meteorol. 71, 135-149.

    Google Scholar 

  • Bosveld, F. C.: 1997, 'Derivation of Fluxes from Profiles over a Moderately Homogeneous Forest', Boundary-Layer Meteorol. 85, 289-326.

    Google Scholar 

  • Bosveld, F. C.: 1999, 'Exchange Processes between a Coniferous Forest and the Atmosphere', Thesis, Wageningen University, The Netherlands. ISBN 90-5808-111-7.

    Google Scholar 

  • Bosveld, F. C. and Bouten, W.: 2001, 'Evaluation of Transpiration Models with Observations over a Douglas-Fir Forest', Agric. For. Meteorol. 108, 247-264.

    Google Scholar 

  • Bosveld, F. C., Holtslag, A. A. M., and van den Hurk, B. J. J. M.: 1999a, 'Interpretation of Crown Radiation Temperatures of a Dense Douglas-Fir Forest', Boundary-Layer Meteorol. 92, 429-451.

    Google Scholar 

  • Bosveld, F. C., Holtslag, A. A. M., and van den Hurk, B. J. J. M.: 1999b, 'Night Time Convection in the Interior of a Dense Douglas-Fir Forest', Boundary-Layer Meteorol. 93, 171-195.

    Google Scholar 

  • Bouten, W.: 1992, 'Monitoring and Modelling Forest Hydrological Processes in Support of Acidification Research', Thesis, University of Amsterdam, The Netherlands, ISBN 90-6787-034-X.

    Google Scholar 

  • Bouten, W. and Bosveld, F. C.: 1991, 'Microwave Transmission, A New Tool in Forest Hydrological Research-Reply', J. Hydrol. 125, 313-317.

    Google Scholar 

  • Bouten, W., Schaap, M. G., Aerts, J. C. J. H., and Vermetten, A. W. M.: 1996, 'Monitoring and Modelling Rainfall Interception and Canopy Wetness in Support of Acidification Research', J. Hydrol. 181, 305-321.

    Google Scholar 

  • Bouten, W., Swart, P. J. F., and de Water, E.: 1990, 'Microwave Transmission, A New Tool in Forest Hydrological Research', J. Hydrol. 124, 119-130.

    Google Scholar 

  • Brain, P. and Butler, D. R.: 1985, 'A Model of Drop Size Distribution for a System with Evaporation', Plant Cell Environ. 8, 247-252.

    Google Scholar 

  • Butler, D. R.: 1985, 'The Energy Balance of Water Drops on a Leaf Surface', Boundary-Layer Meteorol. 32, 337-349.

    Google Scholar 

  • Butler, D. R.: 1986, 'Evaporation from Raindrops on Leaves in a Cereal Canopy: A Simulation Model', Boundary-Layer Meteorol. 36, 39-51.

    Google Scholar 

  • Chen, J.: 1984, 'Uncoupled Multi-Layer Model for the Transfer of Sensible and Latent Heat Flux Densities from Vegetation', Boundary-Layer Meteorol. 28, 213-225.

    Google Scholar 

  • Cohen, Y., Black, T. A., and Kelliher, F. M.: 1985, Determination of Sap Flow in Douglas Fir Trees Using the Heat Pulse Technique', Can. J. For. Res. 15, 422-428.

    Google Scholar 

  • Dolman, J. and Gregory, D.: 1992, 'The Parameterization of Rainfall Interception in GCMs', Quart. J. Roy. Meteorol. Soc. 118, 455-467.

    Google Scholar 

  • Evers, P. W., Jans, W. W. P., and Steingroever, E. G. (eds.): 1991, Impact of Air Pollution on Ecophysiological Relations in Two Douglas Fir Stands in the Netherlands. Report nr. 637, ISSN 0924-9141, De Dorschkamp, P.O. Box 23, 6700AA, Wageningen, The Netherlands.

  • Granier, A., Bobay, V., Gash, J. H. C., Gelpe, J., Saugier, B., and Shuttleworth, W. J.: 1990, 'Vapour Flux Density and Transpiration Rate Comparisons in a Stand of Maritime Pine (Pinus pinaster Ait. ) in Les Landes Forest', Agric. For. Meteorol. 51, 309-319.

    Google Scholar 

  • Huber, L. and Itier, B.: 1990, 'LeafWetness Duration in a Field Bean Canopy', Agric. For. Meteorol. 51, 281-292.

    Google Scholar 

  • Jarvis, P. G.: 1976, 'The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field', Phil. Trans. Roy. Soc. Lond. B 273, 593-610.

    Google Scholar 

  • Koorevaar, P., Menelik, G., and Dirksen, C.: 1983, Elements of Soil Physics, Elsevier, Amsterdam.

    Google Scholar 

  • Marshal, D. C.: 1985, 'Measurement of Sapflow in Conifers by Heat Transport', Plant. Physiol. 33, 385-396.

    Google Scholar 

  • McNaughton, K. G.: 1994, 'Effective Stomatal and Boundary-Layer Resistances of Heterogeneous Surface', Plant Cell Environ. 17, 1061-1068.

    Google Scholar 

  • McNaughton, K. G. and Jarvis, P. G.: 1983, 'Predicting Effects of Vegetation Changes on Transpiration and Evaporation, in T. T. Kozlowski (ed.), Water Deficits and Plant Growth, Academic Press, New York, pp. 1-47.

    Google Scholar 

  • Michaud, J. D. and Shuttleworth, W. J. (eds.): 1997, 'Special Issue on: Aggregate Description of Land-Atmosphere Interactions', J. Hydrol. 190, 173-397.

  • Monteith, J. L.: 1965, Evaporation and Environment. Symposia of the Society for Experimental Biology. Nr 19, The State and Movement of Water in Living Organisms, Cambridge, pp. 205-234.

    Google Scholar 

  • Monteith, J. L.: 1977, 'Resistance of a Partially Wet Canopy: Whose Equation Fails?', Boundary-Layer Meteorol. 12, 379-383.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1986, Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge, 881 pp.

    Google Scholar 

  • Raupach, M. R. and Finnigan, J. J.: 1988, 'Single Layer Models of Evaporation from Plant Canopies Are Incorrect but Useful, Whereas Multilayer Models Are Correct but Useless: discuss.', Aust. J. Plant Physiol. 15, 705-716.

    Google Scholar 

  • Schulze, E.-D., Cermak, J., Matysek, R., Penka, M., and Zimmerman, R.: 1985, 'Canopy Transpiration and Water Fluxes in the Xylem of the Trunk of Larix and Picea Tress-A Comparison of Xylem Flow, Porometer and Cuvette Measurements', Oecologia 66, 475-483.

    Google Scholar 

  • Shuttleworth, W. J.: 1976, 'Experimental Evidence for the Failure of the Penman-Monteith Equation in PartiallyWet Conditions', Boundary-Layer Meteorol. 10, 91-94.

    Google Scholar 

  • Shuttleworth, W. J. and Wallace, J. S.: 1985, 'Evaporation from Sparse Crops-An Energy Combination Theory', Quart. J. Roy. Meteorol. Soc. 111, 839-855.

    Google Scholar 

  • Stewart, J. B.: 1977, 'Evaporation from the Wet Canopy of a Pine Forest', Water Resour. Res. 13, 915-921.

    Google Scholar 

  • Stewart, R. B. and Rouse, W. R.: 1977, 'Substantiation of the Priestley and Taylor Parameter. α = 1.26 for Potential Evaporation in High Latitudes', J. Appl. Meteorol. 16, 649-650.

    Google Scholar 

  • Swanson, R. H. and Whitfield, D. W. A.: 1981, 'A Numerical Analysis of Heat Pulse Velocity Theory and Practice', J. Exp. Bot. 126, 32, 221-239.

    Google Scholar 

  • Tiktak, A. and Bouten, W.: 1994, 'SoilWater Dynamics and Long-TermWater Balances of a Douglas Fir Stand in the Netherlands', J. Hydrol. 156, 265-283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosveld, F.C., Bouten, W. Evaluating a Model of Evaporation and Transpiration with Observations in a Partially Wet Douglas-Fir Forest. Boundary-Layer Meteorology 108, 365–396 (2003). https://doi.org/10.1023/A:1024148707239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024148707239

Navigation