Skip to main content
Log in

Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex

  • Published:
Journal of Neurocytology

Abstract

It remains to be clarified how many classes of GABAergic nonpyramidal cells exist in the cortical circuit. We have divided GABA cells in the rat frontal cortex into 3 groups, based on their firing characteristics: fast-spiking (FS) cells, late-spiking (LS) cells, and non-FS cells. Expression of calcium-binding proteins and peptides could be shown in separate groups of GABA cells in layers II/III and V of the frontal cortex: (1) parvalbumin cells, (2) somatostatin cells, (3) calretinin and/or vasoactive intestinal polypeptide (VIP) cells [partially positive for cholecystokinin (CCK)] and (4) large CCK cells (almost negative for VIP/calretinin). Combining the physiological and chemical properties of morphologically diverse nonpyramidal cells allows division into several groups, including FS basket cells containing parvalbumin, non-FS somatostatin Martinotti cells with ascending axonal arbors, and non-FS large basket cells positive for CCK. These subtypes show characteristic spatial distributions of axon collaterals and the innervation tendency of postsynaptic elements. With synchronized activity induced by cortical excitatory or inhibitory circuits, firing patterns were also found to differ. Subtype-selective occurrence of electrical coupling, finding for potassium channel Kv3.1 proteins, and cholinergic and serotonergic modulation supports our tentative classification. To clarify the functional architecture in the frontal cortex, it is important to reveal the connectional characteristics of GABA cell subtypes and determine whether they are similar to those in other cortical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beierlein, M., Gibson, J. R. &; Connors, B. W. (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience 3, 904–910.

    PubMed  Google Scholar 

  • Buhl, E. H., TamÁs, G. &; Fisahn, A. (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. Journal of Physiology (London) 513, 117–126.

    Google Scholar 

  • Buhl, E. H., TamÁs, G., Szilagyi, T., Stricker, C., Paulsen, O. &; Somogyi, P. (1997) Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurons of cat visual cortex. Journal of Physiology (London) 500, 689–713.

    Google Scholar 

  • Cape, E. G., Manns, I. D., Alonso, A., Beaudet, A. &; Jones, B. E. (2000) Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes γ and θ cortical activity together with waking and paradoxical sleep. Journal of Neuroscience 20, 8452–8461.

    PubMed  Google Scholar 

  • Castro-Alamancos, M. A. &; Rigas, P. (2002) Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. Journal of Physiology (London) 542, 567–581.

    Google Scholar 

  • Cauli, B., Audinat, E., Lambolez, B., Angulo, M. C., Ropert, N., Tsuzuki, K., Hestrin, S. &; Rossier, J. (1997) Molecular and physiological diversity of cortical nonpyramidal cells. Journal of Neuroscience 17, 3894–3906.

    PubMed  Google Scholar 

  • Cauli, B., Porter, J. T., Tsuzuki, K., Lambolez, B., Rossier, J., Quenet, B. &; Audinat, E. (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proceedings of the National Academy of Sciences USA 97, 6144–6149.

    Google Scholar 

  • Chow, A., Erisir, A., Farb, C., Nadal, M. S., Ozaita, A., Lau, D., Welker, E. &; Rudy, B. (1999) K+ channel expression distinguishes subpopulations of parvalbumin-and somatostatin-containing neocortical interneurons. Journal of Neuroscience 19, 9332–9345.

    PubMed  Google Scholar 

  • Connors, B. W. &; Gutnick, M. J. (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences 13, 99–104.

    PubMed  Google Scholar 

  • Cowan, R. L. &; Wilson, C. J. (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. Journal of Neurophysiology 71, 17–32.

    PubMed  Google Scholar 

  • deFelipe, J. (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. Journal of Chemical Neuroanatomy 14, 1–19.

    PubMed  Google Scholar 

  • deFelipe, J. &; FariÑas, I. (1992) The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology 39, 563–607.

    PubMed  Google Scholar 

  • Deuchars, J. &; Thomson, A. M. (1995) Single axon fast inhibitory postsynaptic potentials elicited by a sparsely spiny interneuron in rat neocortex. Neuroscience 65, 935–942.

    PubMed  Google Scholar 

  • Erisir, A., Lau, D., Rudy, B. &; Leonard, C. S. (1999) Function of specificK+ channels in sustained highfrequency firing of fast-spiking neocortical interneurons. Journal of Neurophysiology 82, 2476–2489.

    PubMed  Google Scholar 

  • FairÉn, A., deFelipe, J. &; Regidor, J. (1984) Nonpyramidal neurons: General account. In Cerebral Cortex, Vol. 1, Cellular Components of the Cerebral Cortex (edited by Peters, A. &; Jones, E. G.) pp. 201–253. New York: Plenum.

    Google Scholar 

  • Feldman, M. L. &; Peters, A. (1978) The forms of nonpyramidal neurons in the visual cortex of the rat. Journal of Comparative Neurology 179, 761–793.

    PubMed  Google Scholar 

  • FÉrÉzou, I., Cauli, B., Hill, E. L., Rossier, J., Hamel, E. &; Lambolez, B. (2002) 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. Journal of Neuroscience 22, 7389–7397.

    PubMed  Google Scholar 

  • Galarreta, M. &; Hestrin, S. (1998) Frequencydependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neuroscience 1, 587–594.

    PubMed  Google Scholar 

  • Galarreta, M. &; Hestrin, S. (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75.

    PubMed  Google Scholar 

  • Gibson, J. R., Beierlein, M. &; Connors, B. W. (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79.

    PubMed  Google Scholar 

  • Gonchar, Y. &; Burkhalter, A. (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cerebral Cortex 7, 347–358.

    PubMed  Google Scholar 

  • Gupta, A., Wang, Y. &; Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278.

    PubMed  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., deFelipe, J., Schmechel, D., Brandon, C. &; Emson, P. C. (1984) Neuropeptide containing neurons of the cerebral cortex are also GABAergic. Proceedings of the National Academy of Sciences USA 81, 6526–6530.

    Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W. &; Streit, P. (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Experimental Brain Research 76, 467–472.

    Google Scholar 

  • Houser, C. R., Hendry, S. H. C., Jones, E. G. &; Vaughn, V. E. (1983) Morphological diversity of immuno-cytochemically identified GABA neurons in monkey sensory-motor cortex. Journal of Neurocytology 12, 617–638.

    PubMed  Google Scholar 

  • Jefferys, J. G. R., Traub, R. D. &; Whittington, M. A. (1996) Neuronal networks for induced' 40 Hz'rhythm. Trends in Neurosciences 19, 202–208.

    PubMed  Google Scholar 

  • Jones, E. G. (1975) Varieties and distribution of nonpyramidal cells in the somatic sensory cortex of the squirrel monkey. Journal of Comparative Neurology 160, 205–268.

    PubMed  Google Scholar 

  • Jones, E. G. (2000) Microcolumns in the cerebral cortex. Proceedings of the National Academy of Sciences USA 97, 5019–5021.

    Google Scholar 

  • Kawaguchi, Y. (1997) Selective cholinergic modulation of cortical GABAergic cell subtypes. Journal of Neurophysiology 78, 1743–1747.

    PubMed  Google Scholar 

  • Kawaguchi, Y. (2001) Distinct firing patterns of neuronal subtypes in cortical synchronized activities. Journal of Neuroscience 21, 7261–7272.

    PubMed  Google Scholar 

  • Kawaguchi, Y. &; Kubota, Y. (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin-and calbindin D28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of Neurophysiology 70, 387–396.

    PubMed  Google Scholar 

  • Kawaguchi, Y. &; Kubota, Y. (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex 7, 476–486.

    PubMed  Google Scholar 

  • Kawaguchi, Y. &; Kubota, Y. (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85, 677–701.

    PubMed  Google Scholar 

  • Kawaguchi, Y. &; Shindou, T. (1998) Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. Journal of Neuroscience 18, 6963–6976.

    PubMed  Google Scholar 

  • Kondo, S. &; Kawaguchi, Y. (2001) Slow synchronized bursts of inhibitory postsynaptic currents (0.1-0.3 Hz) by cholinergic stimulation in the rat frontal cortex in vitro. Neuroscience 107, 551–560.

    PubMed  Google Scholar 

  • Krimer, L. S. &; Goldman-Rakic, P. S. (2001) Prefrontal microcircuits: Membrane properties and excitatory input of local, medium, and wide arbor interneurons. Journal of Neuroscience 21, 3788–3796.

    PubMed  Google Scholar 

  • Kubota, Y., Hattori, R. &; Yui, Y. (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Research 649, 159–173.

    PubMed  Google Scholar 

  • Kubota, Y., Karube, F., Suzuki, K. &; Kawaguchi, Y. (2000) Synaptic connection patterns of fast-spiking cells, Martinotti cells and double bouquet cells in the rat frontal cortex. Society for Neuroscience Abstracts 26 37.18.

    Google Scholar 

  • Kubota, Y. &; Kawaguchi, Y. (1997) Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons. Brain Research 752, 175–183.

    PubMed  Google Scholar 

  • Larkum, M. E., Zhu, J. J. &; Sakmann, B. (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341.

    PubMed  Google Scholar 

  • Lewis, D. A., Pierri, J. N., Volk, D. W., Melchitzky, D. S. &; Woo, T. U. (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biological Psychiatry 46, 616–626.

    PubMed  Google Scholar 

  • Mccormick, D. A., Connors, B. W., Lighthall, J. W. &; Prince, D. A. (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology 54, 782–806.

    PubMed  Google Scholar 

  • Metherate, R., Cox, C. L. &; Ashe, J. H. (1992) Cellular bases of neocortical activation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience 12, 4701–4711.

    PubMed  Google Scholar 

  • Meyer, A. H., Katona, I., Blatow, M., Rozov, A. &; Monyer, H. (2002) In vivo labeling of parvalbuminpositive interneurons and analysis of electrical coupling in identified neurons. Journal of Neuroscience 22, 7055–7064.

    PubMed  Google Scholar 

  • Miles, R. (2000) Diversity in inhibition. Science 287, 244–246.

    PubMed  Google Scholar 

  • Miles, R., Toth, K., Gulyas, A. I., Hajos, N. &; Freund, T. F. (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823.

    PubMed  Google Scholar 

  • Morales, M. &; Bloom, F. E. (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. Journal of Neuroscience 17, 3157–3167.

    PubMed  Google Scholar 

  • Nelson, S. B. (2002) Cortical microcircuits: Diverse or canonical? Neuron 36, 19–27.

    PubMed  Google Scholar 

  • Parra, P., GulyÁs, A. I. &; Miles, R. (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993.

    PubMed  Google Scholar 

  • Porter, J. T., Cauli, B., Tsuzuki, K., Lambolez, B., Rossier, J. &; Audinat, E. (1999) Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. Journal of Neuroscience 19, 5228–5235.

    PubMed  Google Scholar 

  • RamÓn Y Cajal, S. (1911) Histology of the Nervous System. Vol. 2 (translated by Swanson, N. &; Swanson, L. W.). New York: Oxford UP.

    Google Scholar 

  • Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P. &; Sakmann, B. (1998) Target-cellspecific facilitation and depression in neocortical circuits. Nature Neuroscience 1, 279–285.

    PubMed  Google Scholar 

  • Rudy, B. &; Mcbain, C. J. (2001) Kv3 channels: Voltagegated K+ channels designed for high-frequency repetitive firing. Trends in Neurosciences 24, 517–526.

    PubMed  Google Scholar 

  • Sanchez-Vives, M. V. &; McCormick, D. A. (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience 3, 1027–1034.

    PubMed  Google Scholar 

  • Silva, L. R., Amitai, Y. &; Connors, B. W. (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435.

    PubMed  Google Scholar 

  • Somogyi, P., Hodgson, A. J., Smith, A. D., Nunzi, M. G., Gorio, A. &; Wu, J.-Y. (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatinor cholecystokinin-immunoreactive material. Journal of Neuroscience 4, 2590–2603.

    PubMed  Google Scholar 

  • Somogyi, P., TamÁs, G., Lujan, R. &; Buhl, E. H. (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Research Review 26, 113–135.

    PubMed  Google Scholar 

  • Steriade, M., Amzica, F., Neckelmann, D. &; Timofeev, I. (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extraand intracellular patterns. Journal of Neurophysiology 80, 1456–1479.

    PubMed  Google Scholar 

  • Steriade, M., Nunez, A. &; Amzica, F. (1993a) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. Journal of Neuroscience 13, 3252–3265.

    PubMed  Google Scholar 

  • Steriade, M., Nunez, A. &; Amzica, F. (1993b) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience 13, 3266–3283.

    PubMed  Google Scholar 

  • Stevens, C. F. (1998) Neuronal diversity: Too many cell types for comfort? Current Biology 8, R708–R710.

    PubMed  Google Scholar 

  • TamÁs, G., Buhl, E. H., Lorincz, A. &; Somogyi, P. (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neuroscience 3, 366–371.

    PubMed  Google Scholar 

  • TamÁs, G., Somogyi, P. &; Buhl, E. H. (1998) Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. Journal of Neuroscience 18, 4255–4270.

    PubMed  Google Scholar 

  • Thomson, A. M. &; Deuchars, J. (1997) Synaptic interactions in neocortical local circuits: Dual intracellular recordings in vitro. Cerebral Cortex 7, 510–522.

    PubMed  Google Scholar 

  • Thomson, A. M. &; West, D. C. (1986) Nmethylaspartate receptors mediate epileptiform activity evoked in some, but not all, conditions in rat neocortical slices. Neuroscience 19, 1161–1177.

    PubMed  Google Scholar 

  • Thomson, A. M., West, D. C., Wang, Y. &; Bannister, A. P. (2002) Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro. Cerebral Cortex 9, 936–953.

    Google Scholar 

  • Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. &; Markram, H. (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex 12, 395–410.

    PubMed  Google Scholar 

  • White, E. L. (1989) Cortical circuits: Synaptic Organization of the Cerebral Cortex Structure, Function, and Theory (edited by White, E. L. &; Keller, A.). Boston: Birkhüuser.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaguchi, Y., Kondo, S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31, 277–287 (2002). https://doi.org/10.1023/A:1024126110356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024126110356

Keywords

Navigation