Skip to main content
Log in

Catalytic analysis of a recombinant d-hydantoinase from Agrobacterium tumefaciens

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The d-hydantoinase gene of a wild strain of Agrobacterium tumefaciens BQL9 had 99.78% nucleotide sequence identity with other available Agrobacterium genes. The resulting amino acid sequence showed two important substitutions affecting two α-helixes in the secondary structure of the protein. The union of Mn2+ to the protein was essential for activating the enzyme and was independent of the temperature. d-Hydantoinase only was inactivated in the presence of 70 mM EDTA and at over 40 °C. The enzyme showed both hydantoinase and pyrimidinase activities, but only with the d-enantiomers of the substrates. Activity was greater for substrates with apolar groups in the number 5 carbon atom of the hydantoin. The native structure of the N-terminal end of this d-hydantoinase proved to be indispensable to its enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7: 1513–1518.

    Google Scholar 

  • Brooks KP, Jones EA, Kim BD, Sander EG (1983) Bobine liver dihydropyrimidine amidohydrolase: purification, properties, and characterization as a zinc metalloenzyme. Arch. Biochem. Biophys. 226: 469–483.

    Google Scholar 

  • Buchanan K, Burton SG, Dorrington RA, Matcher GF, Skepu Z (2001) A novel Pseudomonas putida strain with high levels of hydantoin-converting activity, producing L-amino acids. J. Mol. Catal. B Enzym. 11: 397–406.

    Google Scholar 

  • Cecere F, Galli G, Morisi F (1975) Substrate and steric specificity of hydropyrimidine hydrase. FEBS Lett. 5: 192–194.

    Google Scholar 

  • Dagert M, Ehlrich SD (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23–28.

    Google Scholar 

  • Durham DR, Weber JE (1995) Properties of D-hydantoinase from Agrobacterium and its use for the preparation of N-carbamoyl-Daminoacids. Biochem. Biophys. Res. Commun. 216: 1095–1100.

    Google Scholar 

  • Grifantini R, Galli G, Carpani G, Praseti C, Frascotti G, Grandi G (1998) Efficient conversion of 5-sustituted hydantoins to D-?-amino acids using recombinant Escherichia coli strains. Microbiology 144: 947–954.

    Google Scholar 

  • Grifantini R, Pratsi C, Galli G, Grandi G (1996) Topological mapping of the cysteine residues of N-carbamoyl-D-amino-acid amidohydrolase and their role in enzymatic activity. J. Biol. Chem. 27: 9326–9331.

    Google Scholar 

  • Hartley CJ, Kirchmann S, Burton SG (1998) Production of Damino acids from D,L-5-substituted hydantoins by an Agrobacterium tumefaciens strain and isolation of a mutant with inducer-independent expression of hydantoin-hydrolysing activity. Biotechnol. Lett. 20: 707–711.

    Google Scholar 

  • Holt JG (1984) Bergey's Manual of Systematic Bacteriology, Vol. 1. Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403–405.

    Google Scholar 

  • Kim GJ, Kim HS (1995) Optimizating of the enzimatic synthesis of D-p-hydroxyphenylglycine from D,L-5-substituted hydantoin using D-hydantoinase and N-carbamoylase. Enz. Microb. Technol. 17: 63–67.

    Google Scholar 

  • Kim GJ, Kim HS (1998a) Identification of the estructural similarity in the functionally related amidohidrolases acting on the cyclic amide ring. Biochem. J. 330: 295–302.

    Google Scholar 

  • Kim GJ, Kim HS (1998b) C-terminal regions of D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure. Biochem. Biophys. Res. Commun. 243: 96–100.

    Google Scholar 

  • Kim GJ, Cheon YH, Kim HS (2000) Direct evolution of a novel N-carbamoylase/D-hydantoinase fusion enzime for functional expression with enhanced stability. Biotechnol. Bioeng. 68: 211–217.

    Google Scholar 

  • Las Heras-Vazquez FJ, Mingorance-Cazorla L, Clemente-Jimenez JM, Rodriguez-Vico F (2003) Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Res. 3: 3–9.

    Google Scholar 

  • Lee SG, Lee DC, Sung MH, Kim HS (1994) Isolation of thermostable D-hydantoinase-producing thermophilic Bacillus sp. SD-1. Biotechnol. Lett. 16: 461–466.

    Google Scholar 

  • Martinez-Rodriguez S, Las Heras-Vazquez FJ, Clemente-Jimenez JM, Mingorance-Cazorla L, Rodriguez-Vico F (2002) Complete conversion of D,L-5-monosubstituted hydantoins with a low velocity of chemical racemization into D-amino acids using whole cells of recombinant Escherichia coli. Biotechnol. Prog. 18: 1201–1206.

    Google Scholar 

  • May O, Siemann M, Pietzsh M, Kiess M, Mattes R, Syldatk C (1998a) Substrate-dependent enantioselectivity of a novel hydantoinase from Arthrobacter aurescens DSM 3745: purification and characterization as new member of cyclic amidases. J. Biotech. 61: 1–3.

    Google Scholar 

  • May O, Siemann M, Siemann MG, Syldatk C (1998b) Catalytic and structural function of Zinc for the hidantoinase from Arthrobacter aurescens DSM 3745 J. Mol. Catal. B Enzym. 4: 211–218.

    Google Scholar 

  • May O, Siemann M, Siemann MG, Syldatk C (1998c) The hydantoin anidohydrolase from Arthrobacter aurescens DSM 3745 is a Zinc metalloenzyme. J. Mol. Catal. B Enzym. 5: 367–370.

    Google Scholar 

  • Meyer P, Runser S (1993) Efficient production of the industrial biocatalysts hydantoinase and N-carbamoyl amino acid amidohydrolase: novel non-metabolizable inducers. FEMS Microbiol. Lett. 109: 67–74.

    Google Scholar 

  • Morin A, Hummel W, Schütte H, Kula M-R (1986) Characterization of hydantoinase from Pseudomas fluorescens strain DSM84. Biotechnol. Appl. Biochem. 8: 564–574.

    Google Scholar 

  • Olivieri R, Fascetti E, Angelini L, Degen L (1979) Enzymatic conversion of N-carbamoyl-D-amino acids to D-amino acids. Enz. Microb. Technol. 1: 201–207.

    Google Scholar 

  • Olivieri R, Fascetti E, Angelini L, Degen L (1981) Microbial transformation of racemic hydantoins to D-amino acids. Biotechnol. Bioeng. 23: 2173–2183.

    Google Scholar 

  • Pietzsch M, Syldatk C (2002) Hydrolisis and formation of hydantoins. In: Drauz K, Waldmann H, eds. Enzyme Catalysis in Organic Synthesis. Weinheim: VCH-Verlag, pp. 409–428.

    Google Scholar 

  • Runser S, Meyer PC (1993) Purification and biochemical characterization of the hydantoin hydrolizing enzyme from Agrobacterium sp. Eur. J. Biochem. 213: 1315–1324.

    Google Scholar 

  • Runser S, Chinski N, Ohleyer E (1990) D-p-hydroxiphenylglycine production from D,L-5-p-hydroxiphenylhydantoin by Agrobacterium sp. Appl. Microbiol. Biotechnol. 33: 382–388.

    Google Scholar 

  • Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214: 1205–1210.

    Google Scholar 

  • Siemann M, Alvarado-Marin A, Pietzsch M, Syldatk C (1999) D-Specific hydantoin amidohydrolase: properties of the metalloenzyme purified from Arthrobacter crystallopoietes 3745. J. Mol. Catal. B Enzym. 6: 387–397.

    Google Scholar 

  • Stultz CM, Nambudripad R, Lathrop RH, White JV (1997) Protein structural biology in bio-medical research. In: Allewell N, Woodward C, eds. Advances in Molecular and Cell Biology, Vol 22B. Greenwich: JAI Press, pp. 447–506.

    Google Scholar 

  • Syldatk C, Lehmensiek V, Ulrichs G, Bilitewski U, Krohn K, Höke H, Wagner F (1992) Biotechnological production of unnatural L-amino acids from D,L-5-monosubstituted hydantoins. I. Derivates of L-phenylalanine. Biotechnol. Lett. 14: 99–104.

    Google Scholar 

  • White JV, Stultz CM, Smith TF (1994) Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math. Biosci. 119: 35–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Rodríguez-Vico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemente-Jiménez, J.M., Martínez-Rogríguez, S., Mingorance-Cazorla, L. et al. Catalytic analysis of a recombinant d-hydantoinase from Agrobacterium tumefaciens . Biotechnology Letters 25, 1067–1073 (2003). https://doi.org/10.1023/A:1024115220304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024115220304

Navigation