Skip to main content

Advertisement

Log in

Mad dogs, Englishmen and apoptosis: The role of cell death in UV-induced skin cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis plays a critical role in the development and progression of ultraviolet-induced skin cancers. In particular, Fas and Fas ligand (FasL) interactions are known to control the development of “sunburn cells” or apoptotic keratinocytes in the UV-exposed epidermis. In the absence of functional Fas/FasL signaling, UV-induced apoptosis is diminished and mutations rapidly accumulate. UV-induced suppression of host immunity, a process regulating skin cancer outgrowth, is also controlled through Fas/FasL interactions. Other death receptors, such as the receptor for tumor necrosis factor, may also contribute to UV-induced carcinogenesis and progression. Understanding the involvement of cell death in cancers caused by exposure to sunlight may provide novel approaches for prevention and therapy of these ever-increasing malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher MS, Kripke ML. Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc Natl Acad Sci USA 1977; 74: 1688-1692.

    Google Scholar 

  2. Frankel DH, Hanusa BH, Zitelli JA. New primary nonmelanoma skin cancer in patients with a history of squamous cell carcinoma of the skin. Implications and recommendations for follow-up. J Am Acad Dermatol 1992; 26: 720-726.

    Google Scholar 

  3. Kahn HS, Tatham LM, Patel AV, Thun MJ, Heath Jr. CW. Increased cancer mortality following a history of nonmelanoma skin cancer. Jama 1998; 280: 910-912.

    Google Scholar 

  4. Tyrrell RM. Ultraviolet radiation and free radical damage to skin. Biochem Soc Symp 1995; 61: 47-53.

    Google Scholar 

  5. Ziegler A, Leffell DJ, Kunala S, et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 1993; 90: 4216-4220.

    Google Scholar 

  6. Parrish JA, Jaenicke KF, Anderson RR. Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 1982; 36: 187-191.

    Google Scholar 

  7. Drobetsky EA, Turcotte J, Chateauneuf A. A role for ultraviolet A in solar mutagenesis. Proc Natl Acad Sci USA 1995; 92: 2350-2354.

    Google Scholar 

  8. Cleaver JE, Bootsma D. Xeroderma pigmentosum: Biochemical and genetic characteristics. Annu Rev Genet 1975; 9: 19-38.

    Google Scholar 

  9. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum: Cutaneous, ocular, and neurological abnormalities in 830 published cases. Arch Dermatol 1987; 123: 241-250.

    Google Scholar 

  10. Brash DE. UV mutagenic photoproducts in Escherichia coli and human cells: A molecular genetics perspective on human skin cancer. Photochem Photobiol 1988; 48: 59-66.

    Google Scholar 

  11. Cadet J, Anselmino C, Douki T, Voituriez L. Photochemistry of nucleic acids in cells. J Photochem Photobiol B 1992; 15: 277-298.

    Google Scholar 

  12. Tang MS, Hrncir J, Mitchell D, Ross J, Clarkson J. The relative cytotoxicity and mutagenicity of cyclobutane pyrimidine dimers and (6-4) photoproducts in Escherichia coli cells. Mutat Res 1986; 161: 9-17.

    Google Scholar 

  13. You YH, Lee DH, Yoon YH, Nakajima S, Yasui A, Pfeifer GP. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J Biol Chem 2001; 276: 44688-44694.

    Google Scholar 

  14. Kanjilal S, Perceall WE, Cummings KK, Kripke ML, Ananthaswamy HN. High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: Evidence of strand bias and tumor heterogeneity. Cancer Res 1993; 53: 2961-2964.

    Google Scholar 

  15. Kripke ML, Cox PA, Alas LG, Yarosh DB. Pyrimidine dimers in DNA initiate systemic immunosuppression in UVirradiated mice. Proc Natl Acad Sci USA 1992; 89: 7516-7520.

    Google Scholar 

  16. Vink AA, Strickland FM, Bucana C, et al. Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice. J Exp Med 1996; 183: 1491-1500.

    Google Scholar 

  17. Wolf P, Yarosh DB, Kripke ML. Effects of sunscreens and a DNAexcision repair enzyme on ultraviolet radiation-induced inflammation, immune suppression, and cyclobutane pyrimidine dimer formation in mice. J Invest Dermatol 1993; 101: 523-527.

    Google Scholar 

  18. Wolf P, Cox P, Yarosh DB, Kripke ML. Sunscreens and T4N5 liposomes differ in their ability to protect against ultravioletinduced sunburn cell formation, alterations of dendritic epidermal cells, and local suppression of contact hypersensitivity. J Invest Dermatol 1995; 104: 287-292.

    Google Scholar 

  19. Vink AA, Moodycliffe AM, Shreedhar V, et al. The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers. Proc Natl Acad Sci USA 1997; 94: 5255-5260.

    Google Scholar 

  20. Brash DE, Rudolph JA, Simon JA, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 1992; 88: 10124-10128.

    Google Scholar 

  21. Zhan Q, Carrier F, Fornance Jr. AJ. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol 1993; 13: 4242-4250.

    Google Scholar 

  22. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323-331.

    Google Scholar 

  23. Smith ML, Chen IT, Zhan Q, O'Connor PM, Fornace Jr. AJ. Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 1995; 10: 1053-1059.

    Google Scholar 

  24. Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372: 773-776.

    Google Scholar 

  25. Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: A sensor forDNAdamage critical in skin cancer etiology. Science 1999; 285: 898-900.

    Google Scholar 

  26. Li G, Ho VC, Berean K, Tron VA. Ultraviolet radiation induction of squamous cell carcinomas in p53 transgenic mice. Cancer Res 1995; 55: 2070-2074.

    Google Scholar 

  27. Li G, Tron V, Ho V. Induction of squamous cell carcinoma in p53-deficient mice after ultraviolet irradiation. J Invest Dermatol 1998; 110: 72-75.

    Google Scholar 

  28. Campbell C, Quinn AG, Ro YS, Angus B, Rees JL. p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J Invest Dermatol 1993; 100: 746-748.

    Google Scholar 

  29. Lacour JP. Carcinogenesis of basal cell carcinomas: Genetics and molecular mechanisms. Br J Dermatol 2002; 146(Suppl 61): 17-19.

    Google Scholar 

  30. Ichiki H, Sakurada H, Kamo N, Takahashi TA, Sekiguchi S. Generation of active oxygens, cell deformation and membrane potential changes upon UV-B irradiation in human blood cells. Biol Pharm Bull 1994; 17: 1065-1069.

    Google Scholar 

  31. Renzing J, Hansen S, Lane DP. Oxidative stress is involved in the activation of p53. J Cell Sci 1996; 109: 1105-1112.

    Google Scholar 

  32. Aragane Y, Kulms D, Metze D, et al. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 1998; 140: 171-182.

    Google Scholar 

  33. Sheikh MS, Antinore MJ, Huang Y, Fournance Hr AJ. Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumor necrosis factor receptor 1. Oncogene 1998; 17: 2555-2563.

    Google Scholar 

  34. Zanke BW, Boudreau K, Rubie E, et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 1996; 6: 606-613.

    Google Scholar 

  35. Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 2000; 288: 870-874.

    Google Scholar 

  36. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188: 2033-2045.

    Google Scholar 

  37. Kibitel J, Hejmadi V, Alas L, O'Connor A, Sutherland BM, Yarosh DB. UV-DNA damage in mouse and human cells induces the expression of tumor necrosis factor alpha. Photochem Photobiol 1998; 67: 541-546.

    Google Scholar 

  38. Bennett M, MacDonald K, Chan SW, Luzio J, Simari R, Weissberg P. Cell surface trafficking of Fas: A rapid mechanism of p53-mediated apoptosis. Science 1998; 282: 290-293.

    Google Scholar 

  39. Owen-Schaub LB, Zhang W, Cusack JC, et al. Wildtype human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995; 15: 3032-3040.

    Google Scholar 

  40. Ouhtit A, Gorny A, Muller HK, Hill LL, Owen-Schaub L, Ananthaswamy HN. Loss of Fas-ligand expression in mouse keratinocytes during UV carcinogenesis. Am J Pathol 2000; 157: 1975-1981.

    Google Scholar 

  41. Washio F, Ueda M, Ito A, Ichihashi M. Higher susceptibility to apoptosis following ultraviolet B irradiation of xeroderma pigmentosum fibroblasts is accompanied by upregulation of p53 and downregulation of bcl-2. Br J Dermatol 1999; 140: 1031-1037.

    Google Scholar 

  42. Adrain C, Creagh EM, Martin SJ. Apoptosis-associated release of Smac/DlABLO from mitochondria requires active caspases and is blocked by Bcl-2. Embo J 2001; 20: 6627-6636.

    Google Scholar 

  43. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 2001; 152: 483-490.

    Google Scholar 

  44. Sitailo L, Tibudan SS, Denning MF. Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J Biol Chem 2002; 277: 19346-19352.

    Google Scholar 

  45. Zhuang L, Wang B, Shinder GA, Shivji GM, Mak TW, Sauder DN. TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 1999; 162: 1440-1447.

    Google Scholar 

  46. Miyasita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293-299.

    Google Scholar 

  47. Miyashita T, Harigai M, Hanada M, Reed JC. Identification of a p53 dependent negative response element in the bcl-2 gene. Cancer Res 1994; 54: 3131-3135.

    Google Scholar 

  48. French LE, Hahne M, Viard I, et al. Fas and Fas ligand in embryos and adult mice: Ligand expression in several immuneprivileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 1996; 133: 335-343.

    Google Scholar 

  49. Munsch D, Watanabe-Fukunaga R, Bourdon JC, et al. Human and mouse Fas (APO-1/CD95) death receptor genes each contain a p53-responsive element that is activated by p53 mutants unable to induce apoptosis. J Biol Chem 2000; 275: 3867-3872.

    Google Scholar 

  50. Filipowicz E, Adegboyega P, Sanchez RL, Gatalica Z. Expression of CD95 (Fas) in sun-exposed human skin and cutaneous carcinomas. Cancer 2002; 94: 814-819.

    Google Scholar 

  51. Gutierrez-Steil C, Wrone-Smith T, Sun X, Krueger JG, Coven T, Nickoloff BJ. Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B-irradiated psoriatic plaques express Fas ligand (CD95L). J Clin Invest 1998; 101: 33-39.

    Google Scholar 

  52. Bullani RR, Wehrli P, Viard-Leveugle I, et al. Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res 2002; 12: 263-270.

    Google Scholar 

  53. Soubrane C, Mouawad R, Antoine EC, Verola O, Gil-Delgado M, Khayat D. A comparative study of Fas and Fas-ligand expression during melanoma progression. Br J Dermatol 2000; 143: 307-312.

    Google Scholar 

  54. Ivanov VN, Bhoumik A, Krasilnikov M, et al. Cooperation between STAT3 and c-jun suppresses Fas transcription. Molecular Cell 2001; 7: 517-528.

    Google Scholar 

  55. Cheng J, Zhou T, Liu C, et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263: 1759-1762.

    Google Scholar 

  56. Casino I, Fiucci G, Papoff G, Ruberti G. Three functional forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 1995; 154: 2706-2713.

    Google Scholar 

  57. Redondo P, Solano T, Vazquez B, Bauza A, Idoate M. Fas and Fas ligand: Expression and soluble circulating levels in cutaneous malignant melanoma. British J Dermatol 2002; 147: 80-86.

    Google Scholar 

  58. Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin Cancer Res 2001; 7: 1282-1286.

    Google Scholar 

  59. Maeda T, Hao C, Tron VA. Ultraviolet light (UV) regulation of TNF family decoy receptors DcR2 and DcR3 in human keratinocytes. J Cutan Med Surg 2001; 5: 294-298.

    Google Scholar 

  60. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355-365.

    Google Scholar 

  61. Orlinick JR, Elkon KB, Chao MV. Separate domains of the human fas ligand dictate self-association and receptor binding. J Biol Chem 1997; 272: 32221-32229.

    Google Scholar 

  62. Chinnaiyan A, O'Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505-512.

    Google Scholar 

  63. Salvesen GS, Dixit VM. Caspases: Intracellular signaling by proteolysis. Cell 1997; 91: 443-446.

    Google Scholar 

  64. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190-195.

    Google Scholar 

  65. Bullani RR, Huard B, Viard-Leveugle I, et al. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001; 117: 360-364.

    Google Scholar 

  66. Shin MS, Park WS, Kim SY, et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 1999; 154: 1785-1791.

    Google Scholar 

  67. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of Fas (Apo-1/CD95) gene in cutaneous squamous cell carcinoma arising from a burn scar. J Invest Dermatol 2000; 114: 122-126.

    Google Scholar 

  68. Deveraux QL, Reed JC. IAP family proteins-Suppressors of apoptosis. Genes Dev 1999; 13: 239-252.

    Google Scholar 

  69. Chen G, Goeddel DV. TNF-R1 signaling: A beautiful pathway. Science 2002; 296: 1634-1635.

    Google Scholar 

  70. Gupta S. A decision between life and death during TNFalpha-induced signaling. J Clin Immunol 2002; 22: 185-194.

    Google Scholar 

  71. Kock A, Schwartz T, Kirnbauer R, et al. Human keratinocytes are a source for human tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 1990; 172: 1609-1614.

    Google Scholar 

  72. Yoshikawa T, Streilein JW. Genetic basis of the effects of ultraviolet light B on cutaneous immunity. Evidence that polymorphism at the Tnfa and Lps loci governs susceptibility. Immunogenetics 1990; 32: 398-405.

    Google Scholar 

  73. Niizeki H, Naruse T, Hecker KH, et al. Polymorphisms in the tumor necrosis factor (TNF) genes are associated with susceptibility to effects of ultraviolet-B radiation on induction of contact hypersensitivity. Tissue Antigens 2001; 58: 369-378.

    Google Scholar 

  74. Moore RJ, Owens DM, Stamp G, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 1999; 5: 828-831.

    Google Scholar 

  75. Kondo S, Wang B, Fujisawa H, et al. Effect of gene-targeted mutation in TNF receptor (p55) on contact hypersensitivity and ultraviolet B-induced immunosuppression. J Immunol 1995; 155: 3801-3805.

    Google Scholar 

  76. Amerio P, Toto P, Feliciani C, et al. Rethinking the role of tumour necrosis factor-alpha in ultraviolet (UV) B-induced immunosuppression: Altered immune response inUV-irradiated TNFR1R2 gene-targeted mutant mice. Br J Dermatol 2001; 144: 952-957.

    Google Scholar 

  77. Kripke ML. Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst 1974; 53: 1333-1336.

    Google Scholar 

  78. Kripke ML. Ultraviolet radiation and immunology: Something new under the sun-Presidential address. Cancer Res 1994; 54: 6102-6105.

    Google Scholar 

  79. Yoshikawa T, Rae V, Bruins-Slot W, Van den Berg JW, Taylor JR, Streilien JW. Susceptibility to effects of UVB radiation as a risk factor for skin cancer in humans. J Invest Dermatol 1990; 95: 530-536.

    Google Scholar 

  80. Streilien JW, Taylor JR, Vincek V, et al. Relationship between ultraviolet radiation-induced immunosuppression and carcinogenesis (Review). J Invest Dermatol 1994; 103: 107S-111S.

    Google Scholar 

  81. Cockburn IT, Krupp P. The risk of neoplasms in patients treated with cyclosporine A. J Autoimmun 1989; 2: 723-731.

    Google Scholar 

  82. Kinlen LJ, Sheil AG, Peto J, Doll R. Collaborative United Kingdom Australasian study of cancer in patients treated with immunosuppressive drugs. Br Med J 1979; 2: 1461-1466.

    Google Scholar 

  83. Boyle J, MacKie RM, Briggs JD, Junor BJ, Atichison TC. Cancer, warts, and sunshine in renal transplant patients. A case-control study. Lancet 1984; 1: 702-705.

    Google Scholar 

  84. Kim TY, Kripke ML, Ullrich SE. Immunosuppression by factors released from UV-irradiated epidermal cells: Selective effects on the generation of contact and delayed hypersensitivity after exposure to UVA or UVB radiation. J Invest Dermatol 1990; 94: 26-32.

    Google Scholar 

  85. Moodycliffe AM, Bucana CD, Kripke ML, Norval M, Ullrich SE. Differential effects of a monoclonal antibody to cisurocanic acid on the suppression of delayed and contact hypersensitivity following ultraviolet irradiation. J Immunol 1996; 157: 2891-2899.

    Google Scholar 

  86. Noonan FP, Hoffman HA. Susceptibility to immunosuppression by ultraviolet B radiation in the mouse. Immunogenetics 1994; 39: 29-39.

    Google Scholar 

  87. Hill LL, Shreedhar VK, Kripke ML, Owen-Schaub LB. A critical role for Fas ligand in the active suppression of systemic immune responses by ultraviolet radiation. J Exp Med 1999; 189: 1285-1294.

    Google Scholar 

  88. Watanabe T, Yoshida M, Shirai Y, et al. Administration of an antigen at a high dose generates regulatory CD4+ T cells expressing CD95 ligand and secreting IL-4 in the liver. J Immunol 2002; 168: 2188-2199.

    Google Scholar 

  89. Rivas JM, Ullrich SE. The role of IL-4, IL-10, and TNF-alpha in the immune suppression induced by ultraviolet radiation. J Leukoc Biol 1994; 56: 769-775.

    Google Scholar 

  90. Nishigori C, Yarosh DB, Ullrich SE, et al. Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc Natl Acad Sci USA 1996; 93: 10354-10359.

    Google Scholar 

  91. Rodriguez-Villanueva J, Greenhalgh D, Wang XJ, et al. Human keratin-1.bcl-2 transgenic mice aberrantly express keratin 6, exhibit reduced sensitivity to keratinocyte cell death induction and are susceptible to skin tumor formation. Oncogene 1998; 16: 853-863.

    Google Scholar 

  92. Cho SH, Delehedde M, Rodriguez-Villanueva J, Brisbay S, McDonnell TJ. Bax gene disruption alters the epidermal response to ultraviolet irradiation and in vivo induced skin carcinogenesis. Int J Mol Med 2001; 7: 235-241.

    Google Scholar 

  93. Jiang W, Ananthaswamy HN, Muller HK, Kripke ML. p53 protects against skin cancer induction by UV-B radiation. Oncogene 1999; 18: 4247-4253.

    Google Scholar 

  94. Jiang W, Ananthaswamy HN, Muller HK, et al. UV irradiation augments lymphoid malignancies in mice with one functional copy of wild-type p53. Proc Natl Acad Sci USA 2001; 98: 9790-9795.

    Google Scholar 

  95. Cho S, O'Connor SL, McDonnell TJ. Evidence that nucleotide excision repair is attenuated in bax-deficient mammalian cells following ultraviolet irradiation. Exp Cell Res 2002; 278: 158-165.

    Google Scholar 

  96. Grossman D, Kim PJ, Blanc-Brude OP, et al. Transgenic expression of survivin in keratinocytes counteracts UV-B induced apoptosis and cooperates with loss of p53. J Clin Invest 2001; 108: 991-999.

    Google Scholar 

  97. Allen SM, Florell SR, Hanks AN, et al. Survivin expression in mouse skin prevents papilloma regression and promotes chemical-induced tumor progression. Cancer Res 2003; 63: 567-572.

    Google Scholar 

  98. Gradilone A, Gazzaniga P, Ribuffo D, et al. Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J Clin Oncol 2003; 21: 306-312.

    Google Scholar 

  99. Lo Muzio L, Staibano S, Pannone G, et al. Expression of the apoptosis inhibitor survivin in aggressive squamous cell carcinoma. Exp Mol Pathol 2002; 70: 249-254.

    Google Scholar 

  100. Kanter-Lewensohn L, Hedblad MA, Wejde J, Larsson O. Immunohistochemical markers for distinguishing Spitz nevi from malignant melanomas. Mod Pathol 1997; 10: 917-920.

    Google Scholar 

  101. Morales-Ducret CR, van de Rijn M, LeBrun DP, Smoller BR. bcl-2 expression in primary malignancies of the skin. Arch Dermatol 1995; 131: 909-912.

    Google Scholar 

  102. Cerroni L, Kerl H. Aberrant bcl-2 protein expression provides a possible mechanism of neoplastic cell growth in cutaneous basal-cell carcinoma. J Cutan Pathol 1994; 21: 398-403.

    Google Scholar 

  103. Zhang W, Remenyik E, Zelterman D, Brash DE, Wikonkal NM. Escaping the stem cell compartment: Sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc Natl Acad Sci USA 2001; 98: 13948-13953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzman, E., Langowski, J.L. & Owen-Schaub, L. Mad dogs, Englishmen and apoptosis: The role of cell death in UV-induced skin cancer. Apoptosis 8, 315–325 (2003). https://doi.org/10.1023/A:1024112231953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024112231953

Navigation