Skip to main content
Log in

Nonperturbative Operator Quantization of Strongly Nonlinear Fields

  • Published:
Foundations of Physics Letters

Abstract

At present an algebra of strongly interacting fields is unknown. In this paper it is assumed that the operators of a strongly nonlinear field can form a non-associative algebra. It is shown that such an algebra can be described as an algebra of some pairs. The comparison of presented techniques with the Green's functions method in superconductivity theory is made. A possible application to the QCD and High-T c superconductivity theory is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Heisenberg, “Zur Quantentheorie nichtrenormierbarer Wellengleichungen,” Z. Naturforsch. 9a, 292 (1954). W. Heisenberg, F. Kortel and H. Mitter, “Zur Quantentheorie nichtlinear Wellengleichungen III,” Z. Naturforsch. 10a, 425 (1955). W. Heisenberg, “Erweiterungen des Hilbert-Raums in der Quantentheorie der Wellenfelder,” Z. Phys., 144, 1 (1956). P. Askoli and W. Heisenberg, “Zur Quantentheorie nichtlinear Wellengleichungen IV: Elektrodynamik,” Z. Naturforsch. 12a, 177 (1957). W. Heisenberg, “Lee model and quantization of nonlinear field equations,” Nucl. Phys. 4, 532 (1957). W. Heisenberg, “Quantum theory of fields and elementary particles,” Rev. Mod. Phys. 29, 269 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  2. W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Max-Planck-Institut für Physik und Astrophysik, Interscience, New York, 1966).

    MATH  Google Scholar 

  3. V. Dzhunushaliev, “String approximation for Cooper pair in High-Tc superconductivity,” Phys. Rev. B 64, 024522 (2001).

    Article  ADS  Google Scholar 

  4. V. Dzhunushaliev, “Nonperturbative quantization of the cylindrically symmetric strongly oscillating field,” Phys. Lett. B498, 218(2001). V. Dzhunushaliev and D. Singleton, “Monopole-like configuration from quantized SU(3) gauge fields,” hepth/0102081.

    Article  ADS  MATH  Google Scholar 

  5. D. F. Kurdgelaidze, “The foundations of nonassociative classical field theory,” Acta Phys. Hung. 57, 79 (1985).

    MathSciNet  Google Scholar 

  6. J. Lohmus, E. Paal, and L. Sorgsepp, Nonassociative Algebras In Physics (Hadronic Press, Palm Harbor, 1994).

    MATH  Google Scholar 

  7. A. I. Nesterov and L. V. Sabinin, “Nonassociative geometry: Towards discrete structure of spacetime,” Phys. Rev. D 62, 081501 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Wulkenhaar, “The standard model within non-associative geometry,” Phys. Lett. B 390, 119 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Dzhunushaliev, “Particle scattering in nonassociative quantum field theory,” Theor. Math. Phys. 100, 1082 (1994). V. Dzhunushaliev and D. Singleton, “Quantization of classical singular solutions in Yang-Mills theory,” Nuovo Cimento 117B, 137 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Pergamon, Oxford, 1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzhunushaliev, V. Nonperturbative Operator Quantization of Strongly Nonlinear Fields. Found Phys Lett 16, 57–70 (2003). https://doi.org/10.1023/A:1024102223722

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024102223722

Navigation