, Volume 118, Issue 2–3, pp 157–170 | Cite as

The Fucosyltransferase Gene Family: An Amazing Summary of the Underlying Mechanisms of Gene Evolution

  • Christophe Javaud
  • Fabrice Dupuy
  • Abderrahman Maftah
  • Raymond Julien
  • Jean-Michel Petit


The fucosyltransferase gene family encodes enzymes that transfer fucose in α1,2, α1,3/4 and α1,6 linkages on a large variety of glycans. The most ancient genes harbour a split coding sequence, and encode enzyme that transfer fucose at or near O- and N-peptidic sites (serine, threonine or chitobiose unit). Conversely, the more recent genes have a monoexonic coding sequence, and encode enzymes that transfer fucose at the glycan periphery. All basic mechanisms of gene evolution contribute to this amazing scenario: exon shuffling, transposition, point mutations, and duplication. As typical examples: (i) exon shuffling leads to the ancestral organization of the α1,6 fucosyltransferase gene; (ii) the ancestor of α1,2 fucosyltransferase genes is reshaped by retrotransposition at the same locus; (iii) duplication associated to point mutations leads to the most recent α1,3/4 fucosyltransferase genes.

duplication evolution fucosyltransferase mutation pseudogenes retrotransposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apoil, P.A., F. Roubinet, S. Despiau, R. Mollicone, R. Oriol & A. Blancher, 2000. Evolution of α2-fucosyltransferase genes in primates: relation between an intronic Alu-Y element and red cell expression of ABH antigens. Mol. Biol. Evol. 17: 337-351.PubMedGoogle Scholar
  2. Bakker, H., E. Schijlen, T. de Vries, W.E.C.M. Schiphorst, W. Jordi, A. Lommen, D. Bosch & I. Van Die, 2001. Plant members of the alpha1->3/4-fucosyltransferase gene family encode an alpha1->4-fucosyltransferase, potentially involved in Lewis(a) biosynthesis, and two core alpha1->3-fucosyltransferases. FEBS Lett. 507: 307-312.PubMedGoogle Scholar
  3. Barreaud, J.P., K. Saunier, J. Souchaire, D. Delourme, A. Oulmouden, R. Oriol, H. Levéziel, R. Julien & J.M. Petit, 2000. Three bovine α2-fucosyltransferase genes encode enzymes that preferentially transfer fucose on Galβ1-3GalNAc acceptor substrates. Glycobiology 10: 611-621.PubMedGoogle Scholar
  4. Bengston, P., C. Larson, A. Lundblad, G. Larson & P. Pahlson, 2001. Identification of a missense mutation (G329; Arg110Gln) in the human FUT7 gene. J. Biol. Chem. 276: 31575-31582.PubMedGoogle Scholar
  5. Blander, J.M., I. Visintin, C.A. Janeway Jr. & R. Medzhitov, 1999. α(1,3)-fucosyltransferase VII and α(2,3)-sialylltransferase IV are up-regulated in activated CD4 T cells and maintained after differentiation into Th1 and migration into inflammatory sites. J. Immunol. 163: 3746-3752.PubMedGoogle Scholar
  6. Breton, C., R. Oriol & A. Imberty, 1998. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8: 87-94.PubMedGoogle Scholar
  7. Cailleau-Thomas, A., P. Coullin, J.J. Candelier, L. Balanzino, B. Mennesson, R. Oriol & R. Mollicone, 2000. FUT4 and FUT9 are expressed early in embryogenesis. Glycobiology 10: 789-802.PubMedGoogle Scholar
  8. Cameron, H.S., D. Szczepaniack & D.W. Weston, 1995. Expression of human chromosome 19q α-(1,3)fucosyltransferase genes in normal tissues. J. Biol. Chem. 270: 20112-20122.PubMedGoogle Scholar
  9. Capy, P., 1998. A plastic genome. Nature 396: 522-523.PubMedGoogle Scholar
  10. Capy, P., 2000. Is bigger better in cricket? Science 287: 985-986.PubMedGoogle Scholar
  11. Clarke, J.L.& W.M. Watkins, 1996. α1,3-fucosyltransferase expression in developing human myeloid cells. J. Biol. Chem. 271: 10317-10328.PubMedGoogle Scholar
  12. Costache, M., P.A. Apoil, A. Cailleau, A. Elmgren, G. Larson, S. Henry, A. Blancher, D. Iordachescu, R. Oriol & R. Mollicone, 1997a. Evolution of fucosyltransferase genes in vertebrates. J. Biol. Chem. 272: 29721-28728.PubMedGoogle Scholar
  13. Costache, M., A. Cailleau, P. Fernandez-Mateos, R. Oriol & R. Mollicone, 1997b. Advances in molecular genetics of α-2-and α-3/4-fucosyltransferases. Transfus. Clin. Biol. 4: 367-382.PubMedGoogle Scholar
  14. DeBose-Boyd, R.A., A. Kwame Nyame & R.D. Cummings, 1999. Molecular cloning and characterization of an α1,3 fucosyltransferase, CEFT-1, from Caenorabditis elegans. Glycobiology 8: 905-917.Google Scholar
  15. Deragon, J.M. & P. Capy, 2000. Impact of transposable elements on the human genome. Ann. Med. 32: 264-273.PubMedGoogle Scholar
  16. DeSouza, S.J., M. Long, L. Schoenbach, S.W. Roy & W. Gilbert, 1996. Intron positions correlate with module boundaries in proteins. P. Natl. Acad. Sci. USA 93: 14632-14636.Google Scholar
  17. DeSouza, S.J., M. Long, R.J. Klein, S.W. Roy, S. Lin & W. Gilbert, 1998. Towards a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. P. Natl. Acad. Sci. USA 95: 5094-5099.Google Scholar
  18. Dupuy, F., J.M. Petit, R. Mollicone, R. Oriol, R. Julien & A. Maftah, 1999. A single amino acid in the hypervariable stem domain of vertebrate α1,3/1,4-fucosyltransferases determines the type1/type2 transfer: characterization of acceptor substrate specificity of the Lewis enzyme by site-directed mutagenesis. J. Biol. Chem. 274: 12257-12262.PubMedGoogle Scholar
  19. Dupuy, F., A. Germot, M. Marenda, R. Oriol, A. Blancher, R. Julien & A. Maftah, 2002. α1,4 Fucosyltransferase activity, a significant function in the primate lineage has appeared twice independently. Mol. Biol. Evol. 19: 815-824.PubMedGoogle Scholar
  20. Eichler, E.E., 2001. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17: 661-669.PubMedGoogle Scholar
  21. Elmgrem, A., R. Mollicone, M. Costache, C. Borjeson, R. Oriol, J. Harrington & G. Larson, 1997. Significance of individual point mutations, T202C and C314T, in the human Lewis (FUT3) gene for expression of Lewis antigens by the human α(1,3/1,4) fucosyltransferase, Fuc-TIII. J. Biol. Chem. 272: 21994-21998.PubMedGoogle Scholar
  22. Elmgrem, A., C. Borjeson, R. Mollicone, R. Oriol, A. Flechter & G. Larson, 2000. Identification of two functionally deficient plasma α3 fucosyltransferase (FUT6) alleles. Hum. Mutat. 16: 473-481.PubMedGoogle Scholar
  23. Esnault, C., J. Maestre & T. Heildmann, 2000. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24: 363-367.PubMedGoogle Scholar
  24. Fernandez-Mateos, P., A. Cailleau, M. Costache, S. Henry, A. Elmgren, G. Larson, B.E. Samuelson, R. Oriol & R. Mollicone, 1998. Point mutations and deletion responsible for the Bombay H null and the Reunion H weak blood groups. Vox Sang. 75: 37-46.PubMedGoogle Scholar
  25. Gastinel, L.N., C. Cambillau, & Y. Bourne, 1999. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with the uridine diphosphogalactose. EMBO J. 18: 3546-3557.PubMedGoogle Scholar
  26. Gilbert, W., 1987. The exon theory of genes. Cold Spring Harb. Sym. 52: 901-905.Google Scholar
  27. Gilbert, W., S.J. DeSouza & M. Long, 1997. Origin of genes. P. Natl. Acad. Sci. USA 94: 7698-7703.Google Scholar
  28. Go, M., 1981. Correlation of DNA exonic region with protein structural units in haemoglobin. Nature 291: 90-93.PubMedGoogle Scholar
  29. Goelz, S.E., C. Hession, D. Goff, B. Giffiths, R. Tizard, B. Newman, G. Chi-Rosso & R. Lobb, 1990. ELFT: a gene that directs the expression of an ELAM-1 ligand. Cell 63: 1349-1356.PubMedGoogle Scholar
  30. Hakomori, S., 1999. Antigen structure and genetic basis of histoblood groups A, B and O: their changes associated with human cancer. Biochim. Biophys. Acta 1473: 247-266.PubMedGoogle Scholar
  31. Henry, S., R. Mollicone, P. Fernandez, B. Samuelson, R. Oriol & G. Larson, 1996. Molecular basis for erythrocyte Le(a+b+) and salivary ABH partial-secretor phenotypes. Expression of an A-T mutation at nucleotide 385 correlates with reduced α(1,2) fucosyltransferase activity. Glycoconjugate J. 13: 263-271.Google Scholar
  32. Huang, M.C., O. Zöllner, T. Moll, P. Maly, A.D. Thall, J.B. Lowe & D. Vestweber, 2000. P-selectin glycoprotein ligand-1 and E-selectin ligand-1 are differentially modified by fucosyltransferases Fuc-TIV and Fuc-TVII in mouse neutrophils. J. Biol. Chem. 275: 31353-31360.PubMedGoogle Scholar
  33. Hitoshi, S., S. Kusunoki, I. Kanazawa & S. Tsui, 1995. Molecular cloning and expression of two types of rabbit β-galactoside α1,2 fucosyltransferase. J. Biol. Chem. 270: 8844-8850.PubMedGoogle Scholar
  34. Hitoshi, S., S. Kusunoki, I. Kanazawa & S. Tsui, 1996. Molecular cloning and expression of a third type of rabbit GDP-L-Fucose: β-D-galactoside 2-α-L fucosyltransferase. J. Biol. Chem. 271: 16975-16981.PubMedGoogle Scholar
  35. Javaud, C., F. Dupuy, A. Maftah, J.C. Michalski, R. Oriol, J.M. Petit & R. Julien, 2000. Ancestral exonic organization of FUT8, the gene encoding the α6-fucosyltransferase, reveals successive peptide domains which suggest a particular three-dimensional core structure for the α6-fucosyltransferase family. Mol. Biol. Evol. 17: 1661-1672.PubMedGoogle Scholar
  36. Johnson, M.E., L. Viggiano, J.A. Bailey, M. Abdul-Rauf, G. Goodwin, M. Rocchi & E.E. Eichler, 2001. Positive selection of a gene family during the emergence of humans and African apes. Nature 413: 514-515.PubMedGoogle Scholar
  37. Johnston, D.S., W.W. Wright, J.H. Shaper, C.H. Hokke, D.H. Van Den Eijnden & H. Joziasse, 1998. Murine sperm-zona binding, a fucosyl residue is required for a high affinity spermbinding ligand. A second site on sperm binds a nonfucosylated, beta-galactosyl-capped oligosaccharide. J. Biol. Chem. 273: 1888-1895.PubMedGoogle Scholar
  38. Kaneko, M., S. Nishihara, N. Shinya, T. Kudo, H. Iwasaki, T. Seno, Y. Okubo & H. Narimatsu, 1997. Wide variety of point mutations in H gene of Bombay and para-Bombay individuals which inactivate H enzyme. Blood 90: 839-849.PubMedGoogle Scholar
  39. Kaneko, M., T. Kudo, H. Iwasaki, T. Shiina, H. Inoko, T. Kozaki, N. Saitou & H. Narimatsu, 1999. Assignment of the human alpha 1,3-fucosyltransferase IX gene (FUT9) to chromosome band 6q16 by in situ hybridization. Cytogenet. Cell Genet. 8: 329-330.Google Scholar
  40. Kazazian, Jr, H.H. & J.V. Moran, 1998. The impact of L1 retrotransposons on the human genome. Nature Genet. 19: 19-24.PubMedGoogle Scholar
  41. Kelly, R.J., L.K. Ernst, R.D. Larsen, J.G. Bryant, J.S. Robinson & J.B. Lowe, 1994. Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals. P. Natl. Acad. Sci. USA 91: 5843-5847.Google Scholar
  42. Kelly, R.J., S. Rouquier, D. Giorgi, G.G. Lennon & J.B. Lowe, 1995. Sequence and expression of a candidate for the human secretor blood group α(1,2)fucosyltransferase gene (FUT2); homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270: 4640-4649.PubMedGoogle Scholar
  43. Kojima, N., Y. Tachida, Y. Yoshida & S. Tsuji, 1996. Puri-fication and characterization of GDP-L-Fuc: N-acetyl β-D-glucosaminide α1,6 fucosyltransferase from human blood platelets. Glycoconjugate J. 15: 783-788.Google Scholar
  44. Kukowska-Latallo, J.F., R.D. Larsen, R.P. Nair & J.B. Lowe, 1990. A cloned human cDNA determines expression of a mouse stage specific embryonic antigen and the Lewis blood group α(1,6/1,4) fucosyltransferase. Gene Dev. 4: 1288-1303.PubMedGoogle Scholar
  45. Larson, G., C. Borjeson, A. Elmgren, A. Kernholt, S. Henry, A. Fletcher, A. Aziz, R. Mollicone & R. Oriol, 1996. Identi-fication of a new plasma alpha(1,3)fucosyltransferase (FUT6) allele requires an extended genotyping strategy. Vox Sang. 71: 233-241.PubMedGoogle Scholar
  46. Legault, D.J., R.J. Kelly, Y. Natsuka & J.B. Lowe, 1995. Human α(1,3/1,4)-fucosyltransferases discriminate between different oligosaccharide acceptor substrates through a discrete peptide fragment. J. Biol. Chem. 270: 20987-20996.PubMedGoogle Scholar
  47. Leiter, H., J. Macha, E. Staudacher, R. Grimm, J. Glössl & F. Altmann, 1999. Purification, cDNA cloning, and expression of GDP-L-Fuc: Asn-linked GlcNAc α1,3-fucosyltransferase from mung beans. J. Biol. Chem. 274: 21830-21839.PubMedGoogle Scholar
  48. Léonard, R., G. Costa, E. Darrambide, S. Lhernould, P. Fleurat-Lessard, M. Carlué, V. Gomord, L. Faye & A. Maftah, 2002. The presence of Lewis a epitope in Arabidopsis thaliana glycoconjugates depends on an active α4-fucosyltransferase gene. Glycobiology 12: 299-306.PubMedGoogle Scholar
  49. Long, M. & M. Deutsch, 1999. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol. 16: 1528-1534.PubMedGoogle Scholar
  50. Long, M., S.J. DeSouza & W. Gilbert, 1995. Evolution of the intron-exon structure of eukaryotic genes. Curr. Opin. Genet. Dev. 5: 774-778.PubMedGoogle Scholar
  51. Long, M., C. Rosenberg & W. Gilbert, 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. P. Natl. Acad. Sci. USA 92: 12495-12499.Google Scholar
  52. Lowe, J.B., 1997. Selectin ligands, leukocytes trafficking, and fucosyltransferase genes. Kidney Int. 51: 1418-1426.PubMedGoogle Scholar
  53. Lynch, M. & J.S. Connery, 2000. The evolutionary fate and consequences of duplicates genes. Science 290: 1152-1155.Google Scholar
  54. McCurley, R.S., A. Recinos IIII, A.S. Olsen, J.C. Gingrich, D. Szczepaniak, H.S. Cameron, R. Krauss & B.W. Weston, 1995. Physical maps of human α(1,3) fucosyltransferase genes FUT3-FUT6 on chromosomes 19p13.3 and 11q21. Genomics 26: 142-146.PubMedGoogle Scholar
  55. McGee, A.W. & D.S. Bredt, 1999. Identification of an intramolecular interaction between the SH3 and guanylate kinase domain of PSD-95. J. Biol. Chem. 274: 17431-17436.PubMedGoogle Scholar
  56. Miyoshi, E., K. Noda, Y. Yamaguchi, S. Inoue, Y. Ikeda, W.G. Wang, J.H. Ko, N. Uozumi, W. Li & N. Taniguchi, 1999. The α1,6-fucosyltransferase gene and its bological significance. Biochim. Biophys. Acta 1473: 9-20.PubMedGoogle Scholar
  57. Mollicone, R., A. Cailleau & R. Oriol, 1995. Molecular genetics of H, Se, Lewis and other fucosyltranferase genes. Transfus. Clin. Biol. 2: 235-242.PubMedGoogle Scholar
  58. Mollicone, R., I. Reguigne, A. Flechter, A. Aziz, M. Rustam, B.W. Weston, R.J. Kelly, J.B. Lowe & R. Oriol, 1994a. Molecular basis for plasma α(1,3)-fucosyltransferase gene deficiency (FUT6). J. Biol. Chem. 269: 12662-12671.PubMedGoogle Scholar
  59. Mollicone, R., I. Reguigne, R.J. Kelly, A. Flechter, J. Watt, S. Chatfield, A. Aziz, H.S. Cameron, B.W. Weston & J.B. Lowe, 1994b. Molecular basis for Lewis α(1,3/1,4)-fucosyltransferase gene deficiency (FUT3) found in Lewis-negative Indonesian pedigrees. J. Biol. Chem. 269: 20987-20994.PubMedGoogle Scholar
  60. Moran, J.V., R.J. DeBerardinis & H.H. Kazazian Jr, 1999. Exon shuffling by L1 retrotransposition. Science 283: 1530-1534.PubMedGoogle Scholar
  61. Moran, J.V., S.E. Holmes, T.P. Naas, R.J. DeBerardinis, J.D. Boeke & H.H. Kazazian Jr, 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87: 917-927.PubMedGoogle Scholar
  62. Natsuka, S., K.M. Gersten, K. Zenita, R. Kannagi & J.B. Lowe, 1994. Molecular cloning of a cDNA encoding a novel human leukocyte α1,3-fucosyltransferase capable of synthesizing the sialyl LewisX determinant. J. Biol. Chem. 269: 16789-16794.PubMedGoogle Scholar
  63. Nekrutenko, A. & W.H. Li, 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17: 619-621.PubMedGoogle Scholar
  64. Nguyen, A.T., E.H. Holmes, J.M. Whitaker, S. Ho, S. Shetterly & B.A. Macher, 1998. Human α1,3/4-fucosyltransferases-identification of amino acids involved in acceptor substrate binding by site-directed mutagenesis. J. Biol. Chem. 273: 25244-25249.PubMedGoogle Scholar
  65. Nishihara, S., S. Yazawa, H. Iwasaki, M. Nakazato, T. Kudo, T. Ando & H. Narimatsu, 1993. α(1,3/1,4)-Fucosyltransferase (Fuc-TIII) gene is inactivated by a single amino substitution in Lewis histo-blood type negative individuals. Biochem. Biophys. Res. Co. 196: 624-631.Google Scholar
  66. Nurminsky, D.I., M.A. Nurminskaya, D. DeAguiar & D.L. Hartl, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila melanogaster. Nature 396: 572-575.PubMedGoogle Scholar
  67. Ohta, T., 1989. Role of gene duplication in evolution. Genome 31: 304-310.PubMedGoogle Scholar
  68. Oriol, R., 1995. ABO, Hh, Lewis, and Secretion. Serology, genetics, and tissue distribution, pp. 37-73 in Blood Cell Biochemistry, Vol. 6: Molecular Basis of Major Human Blood Group Antigens, edited by J.P. Cartron & P. Rouger. Plenum Press, N.Y.Google Scholar
  69. Oriol, R., R. Mollicone, A. Cailleau, L. Balanzino & C. Breton, 1999. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9: 323-334.PubMedGoogle Scholar
  70. Orntoft, T.F., E.M. Vestergaard, E. Holmes, J.S. Jakobsen, N. Grunnet, M. Mortensen, P. Johnson, P. Bross, N. Gregersen, K. Skorstengaard, U.B. Jensen & H. Wolf, 1996. Influence of Lewis alpha1-3/4-L-fucosyltransferase (FUT3) gene mutations on enzyme activity, erythrocyte phenotyping, and circulating tumor marker sialyl-Lewis a levels. J. Biol. Chem. 271: 32260-32268.PubMedGoogle Scholar
  71. Oulmouden, A., D. Vaiman, A. Oustry, E.P. Cribiu & R. Julien, 1995. Localization of fucosyltransferase gene to bovine and goat chromosome 7 and sheep chromosome 5. Mamm. Genome 6: 760-761.PubMedGoogle Scholar
  72. Oulmouden, A., A. Wierinckx, J.M. Petit, M. Costache, M.M. Palcic, R. Mollicone, R. Oriol & R. Julien, 1997. Molecular cloning and expression of a bovine α(1,3)-fucosyltransferase gene homologue to a putative ancestor gene of the human FUT3-FUT5-FUT6 cluster. J. Biol. Chem. 272: 8764-8773.PubMedGoogle Scholar
  73. Palma, A.S., C. Vila-Verde, A.S. Pires, P.S. Fevereiro & J. Costa, 2001. A novel plant α4-fucosyltransferase (Vaccinium myrtillus L.) synthesises the Lewis(a) adhesion determinant. FEBS Lett. 499: 235-238.PubMedGoogle Scholar
  74. Pang, H., Y. Liu, Y. Koda, M. Soejima, J. Jia, T. Schlaphoff, E.D. Du Toit & H. Kimura, 1998a. Five novel missense mutations of the Lewis gene (FUT3) in African (Xhosa) and Caucasian populations in South Africa. Hum. Genet. 102: 675-680.PubMedGoogle Scholar
  75. Pang, H., Y. Koda, M. Soejima & H. Kimura, 1998b. Significance of each of three missense mutations, G484A, G667A, and G808A, present in an inactive allele of the human Lewis gene (FUT3) for α(1,3/1,4)-fucosyltransferase gene inactivation. Glycoconjugate J. 15: 961-967.Google Scholar
  76. Paulson, J.C. & K. Colley, 1989. Glycosyltransferases. Stucture, localization, and control of of cell type-specific glycosylation. J. Biol. Chem. 264: 17615-17618.PubMedGoogle Scholar
  77. Pawson, T., 1995. Protein modules and signalling networks. Nature 373: 573-580.PubMedGoogle Scholar
  78. Reguigne, I., M.R. James, C.W. Richard, R. Mollicone, A. Seawright, J.B. Lowe, R. Oriol & P. Couillin, 1994. The gene encoding myeloid alpha-3-fucosyltransferase (FUT4) is located between D1 1S388 and D11S919 on 11q21. Cytogenet. Cell Genet. 66: 104-106.PubMedGoogle Scholar
  79. Reguigne-Arnould, I., P. Couillin, R. Mollicone, S. Faure, A. Fletcher, R.J. Kelly, J.B. Lowe & R. Oriol, 1995. Relative positions of two clusters of human α-L-fucosyltransferases in 19q (FUT1-FUT2) and 19p (FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19. Cytogenet. Cell Genet. 71: 158-162.PubMedGoogle Scholar
  80. Reguigne Arnould, I., J. Wolfe, N. Hornigold, S. Fauré, R. Mollicone & P. Coullin, 1996. Fucosyltransferase genes are dispersed in the genome: FUT7 is located on 9q34.3 distal to D9S1830. C. R. Acad. Sci. Paris, Life Sciences 319: 783-788.Google Scholar
  81. Roy, S.W., B.P. Lewis, A. Fedorov & W. Gilbert, 2001. Footprints of primordial introns on the eukaryotic genome. Trends Genet. 17: 496-499.PubMedGoogle Scholar
  82. Sasaki, K., K. Kurata, K. Funayama, M. Nagata, E. Watanabe, S. Ohta, N. Hanai & T. Nishi, 1994. Expression cloning of a novel α1,3-fucosyltransferase that is involved in biosynthesis of the sialyl LewisX carbohydrate determinants in leukocytes. J. Biol. Chem. 269: 14730-14737.PubMedGoogle Scholar
  83. Sassaman, D.M., B.A. Dombroski, J.V. Moran, M.L. Kimberland, T.P. Naas, R.J. Deberardinis, A. Gabriel, G.D. Swergold & H.H. Kazazian Jr, 1997. Many human L1 elements are capable of retrotransposition. Nature Genet. 16: 37-43.PubMedGoogle Scholar
  84. Saunier, K., J.P. Barreaud, A. Eggen, R. Oriol, H. Levéziel, R. Julien & J.M. Petit, 2001. Organization of the bovine alpha 2-fucosyltransferase gene cluster suggests that the Sec1 gene might have been shaped through a nonautonomous L1-retrotransposition event within the same locus. Mol. Biol. Evol. 18: 2083-2091.PubMedGoogle Scholar
  85. Sharp, P.A., 1981. Speculations on RNA splicing. Cell 23: 643-646.PubMedGoogle Scholar
  86. Smith, A.F.A., 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9: 657-663.PubMedGoogle Scholar
  87. Stubbs, H.J., H.J. Lih, T.L. Gustafson & K.G. Rice, 1996. Influence on the core fucosylation on the flexibility of a biantennary Nlinked oligosaccharide. Biochemistry 35: 937-947.PubMedGoogle Scholar
  88. Suminaka, R., Y. Takeshina, K. Yasuda, N. Shiga, H. Nakamura & M. Matsuo, 2000. Non-homologous recombination between Alu and LINE-1 repeats caused a 430-kb deletion in the dystrophin gene: a novel source of genomic instability. J. Hum. Genet. 45: 331-336.PubMedGoogle Scholar
  89. Wagner, T., M. Vadon, E. Staudacher, A. Schmarda, C. Gassner, W. Helmberg, G. Lanzer W.A. Flegel & F.F. Wagner, 2001. A new h allele detected in Europe has a missense mutation in alpha(1,2)-fucosyltransferase motif II. Transfusion 41: 31-38.PubMedGoogle Scholar
  90. Wang, Y., L. Shao, S. Shi, R.J. Harris, M.W. Spellman, P. Stanley & R.S. Haltiwanger, 2001. Modification of epidermal growth factor-like repeats with O-fucose: molecular cloning and expression of a novel GDP-fucose:protein O-fucosyltransferase. J. Biol. Chem. 276: 40338-40345.PubMedGoogle Scholar
  91. Wei, W., N.G. Gilbert, S.L. Ooi, J.F. Lawler, E.M. Ostertag, H.H. Kazazian, J.D. Boeke & J.V. Moran, 2000. Human L1 retrotransposition: sis preference versus trans complementation. Mol. Cell. Biol. 21: 1429-1439.Google Scholar
  92. Weninger, W., L.H. Ulfman, G. Cheng, N. Souchkova, E.J. Quackenbush, J.B. Lowe & U.H. von Andrian, 2000. Specialized contributions by FucT-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12: 665-676.PubMedGoogle Scholar
  93. Weston, B.W., R.P. Nair, R.D. Larsen & J.B. Lowe, 1992. Isolation of a novel human α(1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group α(1,3/1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct substrate specificities. J. Biol. Chem. 267: 4152-4160.PubMedGoogle Scholar
  94. Wiederschein, G.Y., O. Koul, J.M. Aucoin, F.I. Smith & R.H. McCluer, 1998. α1,3-fucosyltransferase, α-L-fucosidase, α-Dglucosidase, β-D-galactosidase, and Lex glycoconjugates in developing rat brain. Glycoconjugate J. 15: 379-388.Google Scholar
  95. Wierinckx, A., D. Mercier, A. Oulmouden, J.M. Petit & R. Julien, 1999. Complete genomic organization of futb encoding a bovine α3-fucosyltransferase: exons in human orthologous genes emerged from ancestral intronic sequences. Mol. Biol. Evol. 16: 1535-1547.PubMedGoogle Scholar
  96. Yamagushi, N., J. Fujii, S. Inoue, N. Uozumi, S. Yanagidani, Y. Ikeda, M. Egashira, O. Miyoshi, N. Niikawa & N. Taniguchi, 1999. Mapping of the α6-fucosyltransferase gene, FUT8, to human chromosome 14q24.3. Cytogenet. Cell Genet. 84: 58-60.Google Scholar
  97. Yu, L.C., H.L. Lee, C.C. Chu, R.E. Broadberry & M. Lin, 1999. A newly identified nonsecretor allele of the human histo-blood group alpha (1,2)fucosyltransferase gene (FUT2). Vox Sang. 76: 115-119.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Christophe Javaud
    • 1
  • Fabrice Dupuy
    • 2
  • Abderrahman Maftah
    • 2
  • Raymond Julien
    • 1
  • Jean-Michel Petit
    • 1
  1. 1.Unité de Génétique Moléculaire AnimaleUMR-INRAFrance
  2. 2.EA 3176, Institut des Sciences de la Vie et de la Santé, Faculté des SciencesLaboratoire de Glycobiologie et BiotechnologieLimogesFrance

Personalised recommendations