Skip to main content
Log in

Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The effect of time and spatial averaging on 15N chemical shift/1H-15N dipolar correlation spectra, i.e., PISEMA spectra, of α-helical membrane peptides and proteins is investigated. Three types of motion are considered: (a) Librational motion of the peptide planes in the α-helix; (b) rotation of the helix about its long axis; and (c) wobble of the helix about a nominal tilt angle. A 2ns molecular dynamics simulation of helix D of bacteriorhodopsin is used to determine the effect of librational motion on the spectral parameters. For the time averaging, the rotation and wobble of this same helix are modelled by assuming either Gaussian motion about the respective angles or a uniform distribution of a given width. For the spatial averaging, regions of possible 15N chemical shift/1H-15N dipolar splittings are computed for a distribution of rotations and/or tilt angles of the helix. The computed spectra show that under certain motional modes the 15N chemical shift/1H-15N dipolar pairs for each of the residues do not form patterns which mimic helical wheel patterns. As a result, the unambiguous identification of helix tilt and helix rotation without any resonance assignments or on the basis of a single assignment may be difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachar, M. and Becker, O.M. (2000) Biophys. J., 78, 1359–1375.

    Google Scholar 

  • Bechinger, B. (2000) Phys. Chem. Chemical Phys., 2, 4563–4579.

    Google Scholar 

  • Bechinger, B. and Sizun, C. (2002) Concepts Magnetic Res., submitted.

  • Bielecki, A., Kolbert, A.C. and Levitt, M.H. (1989) Chem. Phys. Lett., 155, 341–346.

    Google Scholar 

  • Biggin, P.C. and Sansom, M.S.P. (1999) Biophys. Chem., 76, 161–183.

    Google Scholar 

  • Bowers, J.L. and Oldfield, E. (1988) Biochemistry, 27, 5156–5161.

    Google Scholar 

  • Brender, J.R., Taylor, D.M. and Ramamoorthy, A. (2001) J. Am. Chem. Soc., 123, 914–922.

    Google Scholar 

  • Colnago, L.A., Valentine, K.G. and Opella, S.J. (1987) Biochemistry, 26, 847–854.

    Google Scholar 

  • Cordes, F.S., Kukol, A., Forrest, L.R., Arkin, I.T., Sansom, M.S.P. and Fischer, W.B. (2001) Biochim. Biophys. Acta, 1512, 291–298.

    Google Scholar 

  • Cornilescu, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 10143–10154.

    Google Scholar 

  • Cross, T.A. and Opella, S.J. (1982) J. Mol. Biol., 159, 543–549.

    Google Scholar 

  • Denny, J.K., Wang, J., Cross, T.A. and Quine, J.R. (2001) J. Magn. Reson., 152, 217–226.

    Google Scholar 

  • Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, Oxford.

    Google Scholar 

  • Glaubitz, C. and Watts, A. (1998) J. Magn. Reson., 130, 305–316.

    Google Scholar 

  • Herzfeld, J., Mulliken, C.M., Siminovitch, D.J. and Griffin, R.G. (1987) Biophys. J., 52, 855–858.

    Google Scholar 

  • Hubbell, W.L., Cafiso, D.S. and Altenbach, C. (2000) Nat. Struct. Biol., 7, 735–739.

    Google Scholar 

  • Huster, D., Xiao, L. and Hong, M. (2001) Biochemistry, 40, 7662–7674.

    Google Scholar 

  • Ishii, Y., Terao, T. and Hayashi, S. (1997) J. Chem. Phys., 107, 2760–2774.

    Google Scholar 

  • Johnson Jr, J.P. and Zagotta, W.N. (2001) Nature, 412, 917–21.

    Google Scholar 

  • Jones, D.H., Barber, K.R., VanDerLoo, E.W. and Grant, C.W. (1998) Biochemistry, 37, 16780–16787.

    Google Scholar 

  • Kukol, A. and Arkin, I.T. (1999) Biophys. J., 77, 1594–1601.

    Google Scholar 

  • Kumashiro, K.K., Schmidt-Rohr, K., Murphy III, O.J., Ouellette, K.L., Cramer, W.A. and Thompson, L.K. (1998) J. Am. Chem. Soc., 120, 5043–5051.

    Google Scholar 

  • Lin, J.H. and Baumgaertner, A. (2000) Biophys. J., 78, 1714–1724.

    Google Scholar 

  • Litman, B.J. and Mitchell, D.C. (1996) Lipids, 31, S193–197.

    Google Scholar 

  • Marassi, F.M. (2001) Biophys. J., 80, 994–1003.

    Google Scholar 

  • Marassi, F.M. and Opella, S.J. (2000) J. Magn. Reson., 144, 150–155.

    Google Scholar 

  • Marassi, F.M., Ma, C., Gratkowski, H., Straus, S.K., Strebel, K., Oblatt-Montal, M., Montal, M. and Opella, S.J. (1999) Proc. Natl. Acad. Sci. USA, 96, 14336–14341.

    Google Scholar 

  • Marsh, D. (1990) CRC Handbook of Lipid Bilayers, CRC Press Ltd., London.

    Google Scholar 

  • North, C.L. and Cross, T.A. (1995) Biochemistry, 34, 5883–5895.

    Google Scholar 

  • Opella, S.J., Marassi, F.M., Gesell, J.J., Valente, A.P., Kim, Y., Oblatt-Montal, M. and Montal, M. (1999) Nat. Struct. Biol., 6, 374–379.

    Google Scholar 

  • Prosser, R.S. and Davis, J.H. (1994) Biophys. J., 66, 1429–1440.

    Google Scholar 

  • Prosser, R.S., Davis, J.H., Dahlquist, F.W. and Lindorfer, M.A. (1991) Biochemistry, 30, 4687–4696.

    Google Scholar 

  • Qui, X.Q., Jakes, K.S., Kienker, P.K., Finkelstein, A. and Slatin, S.L. (1996) J. Gen. Phys., 107, 318–328.

    Google Scholar 

  • Ramamoorthy, A., Gierasch, L.M. and Opella, S.J. (1996) J. Magn. Reson., B111, 81–84.

    Google Scholar 

  • Ramamoorthy, A., Wu, C.H. and Opella, S.J. (1999) J. Magn. Reson., 140, 131–140.

    Google Scholar 

  • Saito, H., Tuzi, S., Yamaguchi, S., Tanio, M. and Naito, A. (2000) Biochim. Biophys. Acta, 1460, 39–48.

    Google Scholar 

  • Sass, H.J., Buldt, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, R., Berendzen, J. and Ormos, P. (2000) Nature, 406, 649–653.

    Google Scholar 

  • Scheurer, C., Skrynnikov, N.R., Lienin, S.F., Straus, S.K., Brüschweiler, R. and Ernst, R.R. (1999) J. Am. Chem. Soc., 121, 4242–4251.

    Google Scholar 

  • Schiffer, M. and Edmundson, A.B. (1967) Biophys. J., 7, 121–135.

    Google Scholar 

  • Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Krüger, P. and van Gunsteren, W.F. (1999) J. Phys. Chem., A103, 3596–3607.

    Google Scholar 

  • Shen, L.Y., Bassolino, D. and Stouch, T. (1997) Biophys. J., 73, 3–20.

    Google Scholar 

  • Sizun, C. and Bechinger, B. (2002) J. Am. Chem. Soc., 124, 1146–1147.

    Google Scholar 

  • Smith, R., Separovic, F., Milne, T.J., Whittaker, A., Bennett, F.M., Cornell, B.A. and Makriyannis, A. (1994) J. Mol. Biol., 241, 456–466.

    Google Scholar 

  • Song, Z.Y., Kovacs, F.A., Wang, J., Denny, J.K., Shekar, S.C., Quine, J.R. and Cross, T.A. (2000) Biophys. J., 79, 767–775.

    Google Scholar 

  • Straus, S.K., Bremi, T. and Ernst, R.R. (1997) J. Biomol. NMR, 10, 119–128.

    Google Scholar 

  • Tieleman, D.P., Shrivastava, I.H., Ulmschneider, M.R. and Sansom, M.S.P. (2001) Proteins, 44, 63–72.

    Google Scholar 

  • van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hünenberger, P.H., Krüger, P., Mark, A.E., Scott, W.R.P. and Tironi, I.G. (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide, De VdF: Hochschulverlag AG an der ETH Zürich and BIOMOS b.v, Zürich, Groningen.

    Google Scholar 

  • Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, Z., Nishimura, K., Gan, Z., Fu, R., Quine, J.R. and Cross, T.A. (2000), J. Magn. Reson., 144, 162–167.

    Google Scholar 

  • Watts, A. (1998) Biochem. Biophys. Acta, 1376, 297–318.

    Google Scholar 

  • Waugh, J.S. (1976) Proc. Natl. Acad. Sci. USA, 73, 1394–1397.

    Google Scholar 

  • Woolf, T.B. and Roux, B. (1994) Proc. Natl. Acad. Sci. USA, 91, 11631–11635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana K. Straus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straus, S.K., Scott, W.R. & Watts, A. Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments. J Biomol NMR 26, 283–295 (2003). https://doi.org/10.1023/A:1024098123386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024098123386

Navigation