Skip to main content
Log in

Mass Spectrometric Study of Nanocrystalline ZnO Vaporization

  • Published:
Inorganic Materials Aims and scope

Abstract

The vapor composition over nano- and microcrystalline ZnO was determined between 450 and 1446 K by mass spectrometric Knudsen cell measurements. The results are used to evaluate the temperature-dependent pressure of atomic Zn, the upper limit of ZnO pressure, the lower limit of the enthalpy of sublimation ZnO(cr) = ZnO(g) at absolute zero, and the upper limit of the dissociation energy D 0(ZnO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Poltorak, O.M., Termodinamika v fizicheskoi khimii (Thermodynamics in Physical Chemistry), Moscow: Vysshaya Shkola, 1991, pp. 176-186.

    Google Scholar 

  2. Motzfeld, K., The Thermal Decomposition of Sodium Carbonate by the Effusion Method, J. Phys. Chem., 1955, vol. 59, p. 139.

    Google Scholar 

  3. Detkov, S.P., Evaluation of Vapor Pressure from the High-Vacuum Vaporization Rate, Zh. Fiz. Khim., 1957, vol. 31, no. 10, p. 2367.

    Google Scholar 

  4. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1977, pp. 251-257.

    Google Scholar 

  5. http://www.chem.msu.su/rus/handbook/ivtan/261-264.html.

  6. Handbuch der präparativen anorganischen Chemie in drei Bänden, von Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1978, 3rd ed. Translated under the title Rukovodstvo po neorganicheskomu sintezu, Moscow: Mir, 1985, vol. 4, p. 1118.

    Google Scholar 

  7. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, New York: Pergamon, 1979, p. 358.

    Google Scholar 

  8. Sidorov, L.N., Mass-spektral'nye termodinamicheskie issledovaniya (Mass Spectrometric Thermodynamic Studies), Moscow: Mosk. Gos. Univ., 1985.

    Google Scholar 

  9. Gurvich, L.V., Khachkuruzov, G.A., Medvedev, V.A., et al., Termodinamicheskie svoistva individual'nykh veshchestv: Spravochnik (Thermodynamic Properties of Individual Substances: A Handbook), Glushko, V.P., Ed., Moscow: Nauka, 1978.

    Google Scholar 

  10. Kazenas, E.K., Bol'shikh, M.A., Petrov, A.A., and Nesterenko, P.A., Mass-spektrometricheskoe issledovanie protsessov ispareniya i dissotsiatsii oksidov medi, serebra, tsinka, kadmiya (Mass Spectrometric Study of Vaporization and Dissociation of Copper, Silver, Zinc, and Cadmium Oxides), Available from VINITI, 1989, Moscow, no. 3588-V89.

  11. Grade, M., Hirschwald, W., and Stolze, F., Nachweis und Stabilitat von ZnO-Molekeln in der Gasphase, Z. Phys. Chem. Neue Folge, 1976, vol. 100, p. 165.

    Google Scholar 

  12. Gusarov, A.V., Makarov, A.V., and Bagaratyan, N.V., Equilibrium Vaporization Behavior of AIIBVI and Dissociation Energies of AIIBVI Molecules, Proc. X Int. IUPAC Conf. on High Temperature Materials Chemistry, Julich, 2000, vol. 10, pp. 423-426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Zbezhneva, S.G., Kovalenko, V.V. et al. Mass Spectrometric Study of Nanocrystalline ZnO Vaporization. Inorganic Materials 39, 594–598 (2003). https://doi.org/10.1023/A:1024049203327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024049203327

Keywords

Navigation