Skip to main content
Log in

Abstract

We assume that QCD can be effectively described with stringlike variables and that this string is approximately represented by a Nambu–Goto or Polyakov string in some energy region. But to overcome the long-standing problems with the behavior of hadronic string amplitudes at low energies, the string is built over the correct (chirally noninvariant) QCD vacuum using a boundary interaction with background chiral fields associated with pions. Making this interaction compatible with the conformal symmetry of the string and with the unitarity constraint on chiral fields, we reconstruct the equations of motion for the latter and, furthermore, recover the Lagrangian of a nonlinear sigma model of pion interactions. We obtain the chiral structural constants of Gasser and Leutwyler in the next-to-leading order in the derivative expansion. The estimated coefficients fit the phenomenological values well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Veneziano, Nuovo Cimento A, 57, 190 (1968).

    Google Scholar 

  2. C. Lovelace, Phys.Lett.B, 28, 264 (1968); J. Shapiro, Phys.Rev., 179, 1345 (1969); Y. Nambu, “Dual hadrodynamics,” in: Proc.Intl.Conf.on Symmetries and Quark Models (R. Chand, ed.), Gordon and Breach, New York (1970), p. 269; H. B. Nielsen, “An almost physical interpretation of the Veneziano model,” in: Proc.15th Intl.Conf.on High Energy Physics, Naukova Dumka, Kiev (1970), p. 234; L. Susskind, Nuovo Cimento A, 69, 457 (1970).

    Google Scholar 

  3. G. 't Hooft, Nucl.Phys.B, 72, 461 (1974); G. Veneziano, Nucl.Phys.B, 117, 519 (1976).

    Google Scholar 

  4. A. M. Polyakov, Phys.Lett.B, 103, 207 (1981); Nucl.Phys.B, 268, 406( 1986); G. P. Pron'ko and A. V. Razumov, Theor.Math.Phys., 56, 760 (1984); T. L. Curtright, G. I. Ghandour, C. B. Thorn, and C. K. Zachos, Phys.Rev.Lett., 57, 799 (1986); T. Curtright, G. Ghandour, and C. K. Zachos, Phys.Rev.D, 34, 3811 (1986); H. Kleinert, Phys.Lett.B, 174, 335 (1986); Phys.Rev.Lett., 58, 1915 (1987); D. C. Lewellen, Nucl.Phys.B, 392, 137 (1993).

    Google Scholar 

  5. D. Antonov, D. Ebert, and Y. A. Simonov, Modern Phys.Lett.A, 11, 1905 (1996); D. Antonov, Surv.High Energy Phys., 14, 265 (2000).

    Google Scholar 

  6. L. D. Solovev, Phys.Rev.D, 58, 035005 (1998).

    Google Scholar 

  7. C. Rebbi, Phys.Rep.C, 12, 1 (1974).

    Google Scholar 

  8. J. Scherk, Rev.Modern Phys., 47, 123 (1975).

    Google Scholar 

  9. P. Frampton, Dual Resonance Models, Benjamin, New York (1974).

    Google Scholar 

  10. A. Neveu, “Dual resonance models and strings in QCD,” in: Recent Advances in Field Theory and Statistical Mechanics (J.-B. Zuber and R. Stora, eds.), North-Holland, Amsterdam (1984), p. 757; A. A. Migdal, Phys.Rep., 102, 199 (1983); A. M. Polyakov, Gauge Fields and Strings, Harwood, Chur, Switzerland (1987); M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vols. 1, 2, Cambridge Univ. Press, Cambridge (1987); J. Polchinski, “Strings and QCD,” in: Black Holes, Membranes, Wormholes, and Superstrings (S. Kalara and D. Nanopoulos, ed.), World Scientific, Singapore (1993), p. 220; hep-th/9210045 (1992).

    Google Scholar 

  11. K. G. Wilson, Phys.Rev.D, 10, 2445 (1974).

    Google Scholar 

  12. R. Kirschner, L. N. Lipatov, and L. Szymanowski, Nucl.Phys.B, 425, 579 (1994).

    Google Scholar 

  13. S. Filipponi, G. Pancheri, and Y. Srivastava, Phys.Rev.Lett., 80, 1838 (1998).

    Google Scholar 

  14. J. Alfaro, A. A. Andrianov, L. Balart, and D. Espriu, “Hadronic string, conformal invariance, and chiral symmetry,” hep-th/0203215 (2002).

  15. E. Cremmer and J. Scherk, Nucl.Phys.B, 72, 117 (1974).

    Google Scholar 

  16. J. Alfaro, A. Dobado, and D. Espriu, Phys.Lett.B, 460, 447 (1999).

    Google Scholar 

  17. C. G. Callan, E. J. Martinec, M. J. Perry, and D. Friedan, Nucl.Phys.B, 262, 593 (1985).

    Google Scholar 

  18. J. Gasser and H. Leutwyler, Nucl.Phys.B, 250, 465 (1985).

    Article  Google Scholar 

  19. S. Fubini, A. J. Hanson, and R. Jackiw, Phys.Rev.D, 7, 1732 (1973); A. Strumia and G. Venturi, Lett.Nuovo Cimento, 13, 337 (1975).

    Google Scholar 

  20. K. R. Dienes and J.-R. Cudell, Phys.Rev.Lett., 72, 187 (1994).

    Google Scholar 

  21. G. Amoros, J. Bijnens, and P. Talavera, Nucl.Phys.B, 602, 87 (2001).

    Google Scholar 

  22. A. A. Andrianov and L. Bonora, Nucl.Phys.B, 233, 232, 247 (1984); A. A. Andrianov, Phys.Lett.B, 157, 425 (1985).

    Google Scholar 

  23. D. Espriu, E. de Rafael, and J. Taron, Nucl.Phys.B, 345, 22 (1990); (erratum) 355, 278 (1991).

    Google Scholar 

  24. M. Polyakov and V. Vereshagin, Phys.Rev.D, 54, 1112 (1996).

    Google Scholar 

  25. A. M. Polyakov, Phys.Scripta T, 15, 191 (1987).

    Google Scholar 

  26. J. Polchinski and Zhu Yang, Phys.Rev.D, 46, 3667 (1992).

    Google Scholar 

  27. A. M. Polyakov, Nucl.Phys.B, 486, 23 (1997); F. Quevedo and C. A. Trugenberger, Nucl.Phys.B, 501, 143 (1997); D. Antonov and D. Ebert, Phys.Rev.D, 58, 067901 (1998).

    Google Scholar 

  28. M. C. Diamantini, H. Kleinert, and C. A. Trugenberger, Phys.Rev.Lett., 82, 267 (1999); Phys.Lett.B, 457, 87 (1999).

    Google Scholar 

  29. A. M. Polyakov, Nucl.Phys. (Proc. Supp.), 68, 1 (1998); Internat.J.Mod.P hys.A, 14, 645 (1999); E. Alvarez, C. Gomez, and T. Ortin, Nucl.Phys.B, 545, 217 (1999); E. Alvarez and C. Gomez, Nucl.Phys.B, 550, 16 9 (1999); JHEP, 0005, 012 (2000). 756

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, A.A., Espriu, D. Strings and Pions. Theoretical and Mathematical Physics 135, 745–756 (2003). https://doi.org/10.1023/A:1024045917981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024045917981

Navigation