Skip to main content
Log in

Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Integrability in string/field theories is known to emerge when considering dynamics in the moduli space of physical theories. This implies that one must study the dynamics with respect to unusual time variables such as coupling constants or other quantities parameterizing the configuration space of physical theories. The dynamics given by variations of coupling constants can be considered as a canonical transformation or, infinitesimally, a Hamiltonian flow in the space of physical systems. We briefly consider an example of integrable mechanical systems. Then any function T\((\vec p,\vec q)\) generates a one-parameter family of integrable systems in the vicinity of a single system. For an integrable system with several coupling constants, the corresponding “Hamiltonians” Ti \((\vec p,\vec q)\) satisfy the Whitham equations and, after quantization (of the original system), become operators satisfying the zero-curvature condition in the coupling-constant space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Morozov, Sov.Phys.Usp., 35, 671 (1992); Phys.Usp., 37, 1 (1994); hep-th/9303139 (1993); “Matrix models as integrable systems,” hep-th/9502091 (1995); A. Mironov, Internat.J.Mod.Phys.A, 9, 4355 (1994); hep-th/9312212 (1993).

    Google Scholar 

  2. A. Mironov and A. Morozov, Phys.Lett.B, 524, 217 (2002).

    Google Scholar 

  3. E. Brezin and V. Kazakov, Phys.Lett.B, 236, 144 (1990); M. Douglas and S. Shenker, Nucl.Phys.B, 335, 635 (1990); D. Gross and A. Migdal, Phys.Rev.Lett., 64, 12 (1990).

    Google Scholar 

  4. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, Nucl.Phys.B, 357, 565 (1991).

    Google Scholar 

  5. M. Toda, Nonlinear Lattice Dynamics [in Japanese], Iwanami Shoten, Tokyo (1978); English transl.: Theory of Nonlinear Lattices, Springer, Berlin (1981).

    Google Scholar 

  6. A. Mironov and A. Morozov, Phys.Lett.B, 252, 47 (1990); J. Ambjorn, J. Jurkiewicz, and Yu. M. Makeenko, Phys.Lett.B, 251, 517 (1990); H. Itoyama and Y. Matsuo, Phys.Lett.B, 255, 202 (1991); F. David, Modern Phys.Lett.A, 5, 1019 (1990).

    Google Scholar 

  7. A. Mironov and A. Morozov, Phys.Lett.B, 490, 173 (2000); hep-th/0005280 (2000).

    Google Scholar 

  8. M. Fukuma, H. Kawai, and R. Nakayama, Internat.J.Mod.Phys.A, 6, 1385 (1991); Comm.Math.Phys., 143, 371 (1992).

    Google Scholar 

  9. E. Barouch, B. M. McCoy, and T. T. Wu, Phys.Rev.Lett., 31, 1409 (1973); C. A. Tracy and B. M. McCoy, Phys.Rev.Lett., 31, 1500 (1973); T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Phys.Rev.B, 13, 316 (1976); M. Jimbo, T. Miwa, and M. Sato, Publ.RIMS, Kyoto Univ., 14, 223 (1978); 15, 201, 577, 871, 1531 826 (1979); D. Bernard and A. LeClair, Nucl.Phys.B, 426, 534 (1994); (erratum) 498, 619 (1997); hep-th/9402144 (1994).

    Google Scholar 

  10. A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, Internat.J.Mod.Phys.B, 4, 1003 (1990).

    Google Scholar 

  11. A. G. Izergin, D. A. Coker, and V. E. Korepin, J.Phys.A, 25, 4315 (1992).

    Google Scholar 

  12. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin, Phys.Lett.B, 275, 311 (1992); hepth/ 9111037 (1991); Nucl.Phys.B, 380, 181 (1992); hep-th/9201013 (1992).

    Google Scholar 

  13. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Internat.J.Mod.Phys.A, 10, 2015 (1995); hepth/ 9312210 (1993); A. Mironov, A. Morozov, and G. W. Semenoff, Internat.J.Mod.Phys.A, 11, 5031 (1996); hep-th/9404005 (1994).

    Google Scholar 

  14. V. Knizhnik, Sov.Phys.Usp., 32, 945 (1989).

    Google Scholar 

  15. G. Akemann and P. H. Damgaard, Nucl.Phys.B, 576, 597 (2000); hep-th/9910190 (1999); H. W. Braden, A. Mironov, and A. Morozov, Phys.Lett.B, 514, 293 (2001).

    Google Scholar 

  16. A. Morozov, “Identities between quantum field theories in different dimensions,” hep-th/9810031 (1998).

  17. N. Seiberg and E. Witten, Nucl.Phys.B, 426, 19 (1994); (erratum) 430, 485 (1994); hep-th/9407087 (1994); Nucl.Phys.B, 431, 484 (1994); hep-th/9408099 (1994).

    Google Scholar 

  18. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys.Lett.B, 355, 466 (1995); hepth/ 9505035 (1995).

    Google Scholar 

  19. H. W. Braden and I. M. Krichever, eds., Integrability: The Seiberg-Witten and Whitham Equations, Gordon and Breach, Amsterdam (2000); A. Gorsky and A. Mironov, “Integrable many-body systems and gauge theories,” hep-th/0011197 (2000).

    Google Scholar 

  20. H. Itoyama and A. Morozov, Nucl.Phys.B, 477, 855 (1996); hep-th/9511126 (1995); Nucl.Phys.B, 491, 529 (1997); hep-th/9512161 (1995); “New matrix model solutions to the Kac-Schwarz problem,” hep-th/9601168 (1996).

    Google Scholar 

  21. I. Krichever, Comm.Pure Appl.Math., 47, 437 (1994); B. Dubrovin, Nucl.Phys.B, 379, 627 (1992); “Geometry of 2d topological field theories,” hep-th/9407018 (1994).

    Google Scholar 

  22. A. Gorsky, A. Marshakov, A. Mironov, and A. Morozov, Nucl.Phys.B, 527, 690 (1998); hep-th/9802007 (1998).

    Google Scholar 

  23. S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Modern Phys.Lett.A, 8, 1047 (1993); Theor.Math.Phys., 95, 571 (1993); hep-th/9208046 (1992).

    Google Scholar 

  24. A. Marshakov, A. Mironov, and A. Morozov, Phys.Lett.B, 389, 43 (1996); hep-th/9607109 (1996); Modern Phys.Lett.A, 12, 773 (1997); hep-th/9701014 (1997); Internat. J.Mod.Phys.A, 15, 1157 (2000); hepth/ 9701123 (1997).

    Google Scholar 

  25. S. N. Ruijsenaars, Comm.Math.Phys., 115, 127 (1988); O. Babelon and D. Bernard, Phys.Lett.B, 317, 363 (1993); V. Fock, “Three remarks on group invariants related to flat connections,” in: Geometry and Integrable Models (P. Pyatov and S. Solodukhin, eds.), World Scientific, Singapore (1995), p. 20; V. Fock and A. Rosly, Amer.Math.Soc.Transl., 191, 67 (1999); math.QA/9802054 (1998); V. Fock, A. Gorsky, N. Nekrasov, and V. Roubtsov, JHEP, 0007, 028 (2000); A. Gorsky and V. Rubtsov, “Dualities in integrable systems: geometrical aspects,” hep-th/0103004 (2001).

    Google Scholar 

  26. H. Braden, A. Marshakov, A. Mironov, and A. Morozov, Nucl.Phys.B, 573, 553 (2000); hep-th/9906240 (1999); A. D. Mironov, Theor.Math.Phys., 129, 1581 (2001); hep-th/0104253 (2001).

    Google Scholar 

  27. A. Mironov and A. Morozov, Phys.Lett.B, 475, 71 (2000); hep-th/9912088 (1999); “Double elliptic systems: Problems and perspectives,” hep-th/0001168 (2000); H. Braden, A. Gorsky, A. Odesskii, and V. Rubtsov, Nucl.Phys.B, 633, 414 (2002); hep-th/0111066 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A.D. Integrability in String/Field Theories and Hamiltonian Flows in the Space of Physical Systems. Theoretical and Mathematical Physics 135, 814–827 (2003). https://doi.org/10.1023/A:1024031020707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024031020707

Navigation