Skip to main content
Log in

Structural Control in Poly(butyl acrylate)-Silica Hybrids by Modifying Polymer-Silica Interactions

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Porous organic-inorganic hybrids of poly(n-butyl acrylate) (PBA) and silica were synthesized with different polymer contents via sol-gel process. With the aim of controlling interfacial properties in hybrids, the bonding agent 3-methacryloxypropyl-trimethoxysilane (MPTS) was copolymerized with n-butyl acrylate (BA) at different proportions. Copolymers P(BA-co-MPTS) and hybrids obtained were characterized by infrared spectroscopy and thermogravimetric analysis. Nitrogen sorption analyses of hybrids determined that the increase in polymer content leads to the formation of non-porous hybrids only if bonding agent content is sufficiently large. Otherwise, hybrids with large pore volumes and sizes, nearly reaching macropore range, are obtained even for polymer content as high as 45% in the absence or low content of MPTS. Scanning electron microscopy images showed that the addition of bonding agent changes the aspect of hybrid surface from rough, with loosely bound particles with a few hundreds nanometers, to relatively smooth, with particles typically smaller than 100 nm. These results were explained considering that a more homogeneous medium provided by the presence of MPTS may lead to easier condensation of PBA-silica particles due to the smaller polymeric domains. This idea is supported by the fact that, after polymer degradation, smaller uniform-sized pores arise for hybrids with larger bonding agent contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Loy, MRS Bull. 26, 364 (2001).

    Google Scholar 

  2. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), pp. 465, 524.

    Google Scholar 

  3. J.E. Mark, C.Y. Jiang, and M.Y. Tang, Macromolecules 17, 2613 (1984).

    Google Scholar 

  4. H.H. Huang, B. Orler, and G.L. Wilkes, Polym. Bull. 14, 557 (1985).

    Google Scholar 

  5. E.J.A. Pope, M. Asami, and J.D. Mackenzie, J. Mater. Res. 4, 1018 (1989).

    Google Scholar 

  6. B.M. Novak, Adv. Mater. 5, 442 (1993).

    Google Scholar 

  7. L. Mascia, Trends Polym. Sci. 3, 61 (1995).

    Google Scholar 

  8. A.B. Brennan and T.M. Miller, in Kirk-Othmer Encyclopedia of Chemical Technology, 4 ed. (Wiley, New York, 1994), Vol. 12, p. 644.

    Google Scholar 

  9. J. Wen and G.L. Wilkes, Chem. Mater. 8, 1667 (1996).

    Google Scholar 

  10. P. Judeinstein and C. Sanchez, J. Mater. Chem. 6, 511 (1996).

    Google Scholar 

  11. A.B. Wojcik and L.C. Klein, Appl. Organometal. Chem. 11, 129 (1997).

    Google Scholar 

  12. Y. Chujo and R. Tamaki, MRS Bull. 26, 389 (2001).

    Google Scholar 

  13. C.J. Brinker, Curr. Opin. Solid Mater. Sci. 1, 798 (1996).

    Google Scholar 

  14. A. Stein, Micropor. Mesopor. Mater. 44–55, 227 (2001).

    Google Scholar 

  15. B. Lindlar, A. Kogelbauer, P.J. Kooyman, and R. Prins, Micropor. Mesopor. Mater. 44–55, 89 (2001).

    Google Scholar 

  16. Y. Lu, G. Cao, R.P. Kale, S. Prabakar, G.P. López, and C.J. Brinker, Chem. Mater. 11, 1223 (1999).

    Google Scholar 

  17. C. Yu, Y. Yu, L. Miao, and D. Zhao, Micropor. Mesopor. Mater. 44–55, 65 (2001).

    Google Scholar 

  18. K.A. Mauritz and C.K. Jones, J. Appl. Polym. Sci. 40, 1401 (1990).

    Google Scholar 

  19. M. Motomatsu, T. Takahashi, H.Y. Nie, W. Mizutani, and H. Tokumoto, Polymer 38, 177 (1997).

    Google Scholar 

  20. W. Zhou, J.H. Dong, K.Y. Qiu, and Y. Wei, J. Appl. Polym. Sci. 73, 419 (1999).

    Google Scholar 

  21. C.K. Chan, I.M. Chu, W. Lee, and W.K. Chin, Macromol. Chem. Phys. 22, 911 (2001).

    Google Scholar 

  22. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity, 2 ed. (Academic Press, San Diego, 1982).

    Google Scholar 

  23. P.A. Webb and C. Orr, Analytical Methods on Fine Particle Technology (Micromeritcs Instrument Corporation, Norcross, 1997).

    Google Scholar 

  24. P. Bosch, F. Monte, J.L. Mateo, and D. Levy, J. Polym. Sci. A: Polym. Chem. 34, 3289 (1996).

    Google Scholar 

  25. Z.H. Huang and K.Y. Qiu, Polymer 38, 521 (1997).

    Google Scholar 

  26. R.O.R. Costa and W.L. Vasconcelos, J. Non-Cryst. Sol. 304, 84 (2002).

    Google Scholar 

  27. I.K. Varma, A.K. Tomar, and R.C. Anand, J. Appl. Polym. Sci. 33, 1377 (1987).

    Google Scholar 

  28. S. Yano, K. Nakamura, M. Kodomari, and N. Yanauchi, J. Appl. Polym. Sci. 54, 163 (1994).

    Google Scholar 

  29. J.C. Pouxviel, J.P. Boilet, J.C. Beloeil, and J.Y. Allemand, J. Non-Cryst. Sol. 89, 345 (1987).

    Google Scholar 

  30. R.O.R. Costa, W.L. Vasconcelos, and F.S. Lameiras, J. Mater. Sci., submitted.

  31. T. Saegusa, J. Macromol. Sci.-Chem. A28, 817 (1991).

    Google Scholar 

  32. R. Tamaki and Y. Chujo, Appl. Organomet. Chem. 12, 775 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, R.O., Lameiras, F.S. & Vasconcelos, W.L. Structural Control in Poly(butyl acrylate)-Silica Hybrids by Modifying Polymer-Silica Interactions. Journal of Sol-Gel Science and Technology 27, 343–354 (2003). https://doi.org/10.1023/A:1024029305642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024029305642

Navigation