Skip to main content
Log in

Chaos in PDEs and Lax Pairs of Euler Equations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Recently, the author and collaborators have developed a systematic program for proving the existence of homoclinic orbits in partial differential equations. Two typical forms of homoclinic orbits thus obtained are: (1) transversal homoclinic orbits, (2) Silnikov homoclinic orbits. Around the transversal homoclinic orbits in infinite-dimensional autonomous systems, the author was able to prove the existence of chaos through a shadowing lemma. Around the Silnikov homoclinic orbits, the author was able to prove the existence of chaos through a horseshoe construction.

Very recently, there has been a breakthrough by the author in finding Lax pairs for Euler equations of incompressible inviscid fluids. Further results have been obtained by the author and collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M. J., Ohta, Y. and Trubatch, A. D.: On discretizations of the vector nonlinear Schrödinger equation, Phys. Lett. A 253(5–6) (1999), 287–304.

    Google Scholar 

  2. Ablowitz, M. J., Ohta, Y. and Trubatch, A. D.: On integrability and chaos in discrete systems, Chaos Solitons Fractals 11(1–3) (2000), 159–169.

    Google Scholar 

  3. Anosov, D. V.: Geodesic flows on compact Riemannian manifolds of negative curvature, Proc. Steklov Inst. Math. 90 (1967).

  4. Arnold, V. I.: Instability of dynamical systems with many degrees of freedom, Soviet Math. Dokl. 5(3) (1964), 581–585.

    Google Scholar 

  5. Arnold, V. I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble 16(1) (1966), 319–361.

    Google Scholar 

  6. Belenkaya, L., Friedlander, S. and Yudovich, V.: The unstable spectrum of oscillating shear flows, SIAM J. Appl. Math. 59(5) (1999), 1701–1715.

    Google Scholar 

  7. Birkhoff, G. D.: Some theorems on the motion of dynamical systems, Bull. Soc. Math. France 40 (1912), 305–323.

    Google Scholar 

  8. Blazquez, C. M.: Transverse homoclinic orbits in periodically perturbed parabolic equations, Nonlinear Anal. 10(11) (1986), 1277–1291.

    Google Scholar 

  9. Bona, J. and Wu, J.: Zero dissipation limit for nonlinear waves, Preprint, 1999.

  10. Childress, S.: A Lax pair of 3D Euler equation, Personal communication, 2000.

  11. Chow, S.-N. and Hale, J. K.: Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

    Google Scholar 

  12. Chow, S.-N., Hale, J. K. and Mallet-Paret, J.: An example of bifurcation to homoclinic orbits, J. Differential Equations 37(3) (1980), 351.

    Google Scholar 

  13. Chow, S. N., Lin, X. B. and Palmer, K. J.: A shadowing lemma with applications to semilinear parabolic equations, SIAM J. Math. Anal. 20(3) (1989), 547–557.

    Google Scholar 

  14. Constantin, P. and Wu, J.: The inviscid limit for non-smooth vorticity, Indiana Univ. Math. J. 45(1) (1996), 67–81.

    Google Scholar 

  15. Coomes, B., Kocak, H. and Palmer, K.: A shadowing theorem for ordinary differential equations, Z. Angew. Math. Phys. 46(1) (1995), 85–106.

    Google Scholar 

  16. Coomes, B., Kocak, H. and Palmer, K. J.: Long periodic shadowing, Numerical Algorithms 14 (1997), 55–78.

    Google Scholar 

  17. Deng, B.: Exponential expansion with Silnikov's saddle-focus, J. Differential Equations 82(1) (1989), 156–173.

    Google Scholar 

  18. Deng, B.: On Silnikov's homoclinic-saddle-focus theorem, J. Differential Equations 102(2) (1993), 305–329.

    Google Scholar 

  19. Faddeev, L. D.: On the stability theory for stationary plane-parallel flows of ideal fluid, Kraevye Zadachi Mat. Fiziki (Zapiski Nauchnykh Seminarov LOMI, v. 21) 5 (1971), 164–172.

    Google Scholar 

  20. Forest, M. G., McLaughlin, D. W., Muraki, D. J. and Wright, O. C.: Nonfocusing instabilities in coupled, integrable nonlinear Schrödinger PDEs, J. Nonlinear Sci. 10(3) (2000), 291–331.

    Google Scholar 

  21. Forest, M. G., Sheu, S. P. and Wright, O. C.: On the construction of orbits homoclinic to plane waves in integrable coupled nonlinear Schrödinger system, Phys. Lett. A 266(1) (2000), 24–33.

    Google Scholar 

  22. Franke, J. E. and Selgrade, J. F.: Hyperbolicity and chain recurrence, J. Differential Equations 26 (1977), 27–36.

    Google Scholar 

  23. Guckenheimer, J. and Holmes, P. J.: Nonlinear Oscillations, Dynamical Systems, and Bifurca-tions of Vector Fields, Appl. Math. Sci. 42, Springer-Verlag, New York, 1983.

    Google Scholar 

  24. Hale, J. K. and Lin, X. B.: Symbolic dynamics and nonlinear semiflows, Ann. Mat. Pura Appl. 144 (1986), 229–259.

    Google Scholar 

  25. Hasegawa, A. and Kodama, Y.: Solitons in Optical Communications, Academic Press, San Diego, 1995.

    Google Scholar 

  26. Henry, D.: Exponential dichotomies, the shadowing lemma and homoclinic orbits in Banach spaces, Resenhas 1(4) (1994), 381–401.

    Google Scholar 

  27. Holmes, P. J. and Marsden, J. E.: A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam, Arch. Rat. Mech. Anal. 76 (1981), 135–166.

    Google Scholar 

  28. Islam, M. N.: Ultrafast Fiber Switching Devices and Systems, Cambridge Univ. Press, New York, 1992.

    Google Scholar 

  29. Kato, T.: Nonstationary flows of viscous and ideal fluids in R 3, J. Funct. Anal. 9 (1972), 296–305.

    Google Scholar 

  30. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations, In: Lecture Notes in Math. 448, 1975, pp. 25–70.

    Google Scholar 

  31. Kato, T.: Remarks on the Euler and Navier–Stokes equations in R 2, Proc. Sympos. Pure Math., Part 2 45 (1986), 1–7.

    Google Scholar 

  32. Kovacic, G.: Dissipative dynamics of orbits homoclinic to a resonance band, Phys. Lett. A 167 (1992), 143.

    Google Scholar 

  33. Kovacic, G.: Hamiltonian dynamics of orbits homoclinic to a resonance band, Phys. Lett. A 167 (1992), 137.

    Google Scholar 

  34. Latushkin, Y., Li, Y. and Stanislavova, M.: The spectrum of a linearized 2D Euler operator, submitted (2001).

  35. Li, Y.: Smale horseshoes and symbolic dynamics in perturbed nonlinear Schrödinger equations, J. Nonlinear Sci. 9(4) (1999), 363.

    Google Scholar 

  36. Li, Y.: Bäcklund–Darboux transformations and Melnikov analysis for Davey–Stewartson II equations, J. Nonlinear Sci. 10(1) (2000), 103.

    Google Scholar 

  37. Li, Y.: On 2D Euler equations. I. On the energy-Casimir stabilities and the spectra for a linearized two dimensional Euler equation, J. Math. Phys. 41(2) (2000), 728.

    Google Scholar 

  38. Li, Y.: A Lax pair for the 2D Euler equation, J. Math. Phys. 42(8) (2001), 3552.

    Google Scholar 

  39. Li, Y.: On 2D Euler equations: Part II. Lax pairs and homoclinic structures, Comm. Appl. Nonlinear Anal., to appear, available at: http://xxx.lanl.gov/abs/math.AP/0010200, or http://www.math.missouri.edu/~cli, 2002.

  40. Li, Y.: Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation, submitted, available at: http://xxx.lanl.gov/abs/math.AP/0106194, or http://www.math.missouri.edu/~cli, 2001.

  41. Li, Y.: Chaos and shadowing lemma for autonomous systems of infinite dimensions, submitted, available at: http://xxx.lanl.gov/abs/nlin/0203024, or http://www.math.missouri.edu/~cli, 2002.

  42. Li, Y.: Melnikov analysis for singularly perturbed DSII equation, submitted, available at: http://xxx.lanl.gov/abs/math.AP/0206272, or http://www.math.missouri.edu/~cli, 2002.

  43. Li, Y.: Existence of chaos for a singularly perturbed NLS equation, submitted, available at: http://xxx.lanl.gov/abs/math.AP/0206270, or http://www.math.missouri.edu/~cli, 2002.

  44. Li, Y.: Singularly perturbed vector and scalar nonlinear Schroedinger equations with persistent homoclinic orbits, Stud. Appl. Math. 109 (2002), 19–38.

    Google Scholar 

  45. Li, Y.: Integrable structures for 2D Euler equations of incompressible inviscid fluids, Proc. Institute of Mathematics of NAS of Ukraine 43(1) (2002), 332–338.

    Google Scholar 

  46. Li, Y.: Chaos in partial differential equations, Contemporary Math., to appear, available at: http://xxx.lanl.gov/abs/math.AP/0205114, or http://www.math.missouri.edu/~cli, 2002.

  47. Li, Y.: On 2D Euler equations: III. A line model, available at: http://xxx.lanl.gov/abs/math.AP/ 0206278, or http://www.math.missouri.edu/~cli, 2002.

  48. Li, Y. et al.: Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math. 49 (1996), 1175.

    Google Scholar 

  49. Li, Y. and McLaughlin, D. W.: Morse and Melnikov functions for NLS PDEs, Comm. Math. Phys. 162 (1994), 175.

    Google Scholar 

  50. Li, Y. and McLaughlin, D. W.: Homoclinic orbits and chaos in discretized perturbed NLS system, Part I. Homoclinic orbits, J. Nonlinear Sci. 7 (1997), 211.

    Google Scholar 

  51. Li, Y. and Shvidkoy, R.: Isospectral theory of Euler equations, submitted, available at: http://xxx.lanl.gov/abs/math.AP/0203125, or http://www.math.missouri.edu/~cli, 2002.

  52. Li, Y. and Wiggins, S.: Homoclinic orbits and chaos in perturbed discrete NLS system. Part II Symbolic dynamics, J. Nonlinear Sci. 7 (1997), 315–370.

    Google Scholar 

  53. Li, Y. and Yurov, A.: Lax pairs and Darboux transformations for Euler equations, submitted, available at: http://xxx.lanl.gov/abs/math.AP/0101214, or http://www.math.missouri.edu/~cli (2001).

  54. Liu, V. X.: An example of instability for the Navier–Stokes equations on the 2-dimensional torus, Comm. Partial Differential Equations 17(11–12) (1992), 1995–2012.

    Google Scholar 

  55. Liu, V. X.: Instability for the Navier–Stokes equations on the 2-dimensional torus and a lower bound for the Hausdorff dimension of their global attractors, Comm. Math. Phys. 147(2) (1992), 217–230.

    Google Scholar 

  56. Liu, V. X.: A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations, Comm. Math. Phys. 158(2) (1993), 327–339.

    Google Scholar 

  57. Liu, V. X.: Remarks on the Navier–Stokes equations on the two-and three-dimensional torus, Comm. Partial Differential Equations 19(5) (1994), 873–900.

    Google Scholar 

  58. Liu, V. X.: On unstable and neutral spectra of incompressible inviscid and viscid fluids on the 2D torus, Quart. Appl. Math. 53(3) (1995), 465–486.

    Google Scholar 

  59. Manakov, S. V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Soviet Phys. JETP 38(2) (1974), 248–253.

    Google Scholar 

  60. Matveev, V. B. and Salle, M. A.: Darboux Transformations and Solitons, Vol. 5, Springer Series in Nonlinear Dynamics, 1991.

  61. Melnikov, V. K.: On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963), 1.

    Google Scholar 

  62. Menyuk, C. R.: Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum Electron 23(2) (1987), 174–176.

    Google Scholar 

  63. Menyuk, C. R.: Pulse propagation in an elliptically birefringent kerr medium, IEEE J. Quantum Electron 25(12) (1989), 2674–2682.

    Google Scholar 

  64. Meshalkin, L. D. and Sinai, Ia. G.: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech. (PMM) 25 (1961), 1140–1143.

    Google Scholar 

  65. Palmer, K.: Exponential dichotomies and transversal homoclinic points, J. Differential Equa-tions 55(2) (1984), 225–256.

    Google Scholar 

  66. Palmer, K.: Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported 1 (1988), 265–306.

    Google Scholar 

  67. Palmer, K.: Shadowing and Silnikov chaos, Nonlinear Anal. 27(9) (1996), 1075–1093.

    Google Scholar 

  68. Poincaré, H.: Les methodes nouvelles de la mecanique celeste, Vols. 1–3, English translation: New Methods of Celestial Mechanics, Vols. 1–3, edited by Daniel L. Goroff, American Institute of Physics, New York, 1993. Gauthier-Villars, Paris, 1899.

    Google Scholar 

  69. Shatah, J. and Zeng, C.: Homoclinic orbits for the perturbed sine–Gordon equation, Comm. Pure Appl. Math. 53(3) (2000), 283–299.

    Google Scholar 

  70. Silnikov, L. P.: A case of the existence of a countable number of periodic motions, Soviet Math. Dokl. 6 (1965), 163–166.

    Google Scholar 

  71. Silnikov, L. P.: The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus, Soviet Math. Dokl. 8 (1967), 54–58.

    Google Scholar 

  72. Silnikov, L. P.: On a Poincare–Birkoff problem, Math. USSR Sb. 3 (1967), 353–371.

    Google Scholar 

  73. Silnikov, L. P.: A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Math. USSR Sb. 10 (1970), 91–102.

    Google Scholar 

  74. Smale, S.: A structurally stable differentiable homeomorphism with an infinite number of pe-riodic points, In: Qualitative Methods in the Theory of Non-linear Vibrations (Proc. Internat. Sympos. Non-linear Vibrations), II, 1961, pp. 365–366.

    Google Scholar 

  75. Smale, S.: Diffeomorphisms with many periodic points, In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, NJ, 1965, pp. 63–80.

    Google Scholar 

  76. Smale, S.: Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

    Google Scholar 

  77. Steinlein, H. and Walther, H.: Hyperbolic sets and shadowing for noninvertible maps, In: Advanced Topics in the Theory of Dynamical Systems, Academic Press, Boston, MA, 1989, pp. 219–234.

    Google Scholar 

  78. Steinlein, H. and Walther, H.: Hyperbolic sets, transversal homoclinic trajectories, and sym-bolic dynamics for c 1-maps in Banach spaces, J. Dynamics Differential Equations 2(3) (1990), 325–365.

    Google Scholar 

  79. Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York, 1988.

    Google Scholar 

  80. Wright, O. C. and Forest, M. G.: On the Bäcklund–Gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system, Phys. D 141(1–2) (2000), 104–116.

    Google Scholar 

  81. Wu, J.: The inviscid limits for individual and statistical solutions of the Navier–Stokes equations, Ph.D. Thesis, Chicago University, 1996.

  82. Wu, J.: The inviscid limit of the complex Ginzburg–Landau equation, J. Differential Equations 142(2) (1998), 413–433.

    Google Scholar 

  83. Yang, J. and Tan, Y.: Fractal dependence of vector-soliton collisions in birefringent fibers, Phys. Lett. A 280 (2001), 129–138.

    Google Scholar 

  84. Yudovich, V. I.: Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Appl. Math. Mech. (PMM) 29 (1965), 527–544.

    Google Scholar 

  85. Zeng, W.: Exponential dichotomies and transversal homoclinic orbits in degenerate cases, J. Dynam. Differential Equations 7(4) (1995), 521–548.

    Google Scholar 

  86. Zeng, W.: Transversality of homoclinic orbits and exponential dichotomies for parabolic equations, J. Math. Anal. Appl. 216 (1997), 466–480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.(. Chaos in PDEs and Lax Pairs of Euler Equations. Acta Applicandae Mathematicae 77, 181–214 (2003). https://doi.org/10.1023/A:1024024001070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024024001070

Navigation