Skip to main content
Log in

Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Different versions of the Darboux–Weinstein theorem guarantee the existence of action–angle-type variables and the harmonic-oscillator variables in a neighborhood of isotropic tori in the phase space. The procedure for constructing these variables is reduced to solving a rather complicated system of partial differential equations. We show that this system can be integrated in quadratures, which permits reducing the problem of constructing these variables to solving a system of quadratic equations. We discuss several applications of this purely geometric fact in problems of classical and quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974); English transl., Springer, Berlin (1978).

    Google Scholar 

  2. V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods [in Russian], Nauka, Moscow (1972); English transl., Springer, Berlin (1991).

    Google Scholar 

  3. M. V. Berry, “Semiclassical mechanics of regular and irregular motion,” in: Chaotic Behavior of Deterministic Systems (Les Houches, Session 36, 1981, G. Iooss, R. H. G. Heelleman, and R. Stora, eds.), North-Holland, Amsterdam (1983), pp. 171-271.

    Google Scholar 

  4. A. V. Bolsinov and A. T. Fomenko, An Introduction to the Topology of Integrable Hamiltonian Systems [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  5. H. W. Broer, G. B. Huitema, and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems (Lect. Notes Math., Vol. 1645), Springer, Berlin (1996).

    Google Scholar 

  6. A. D. Bruno, The Restricted 3-Body Problem: Plane Periodic Orbits [in Russian], Nauka, Moscow (1990); English transl., de Gruyter, Hawthorne, N. Y. (1994).

    Google Scholar 

  7. A. T. Fomenko, Symplectic Geometry: Methods and Applications [in Russian], Moscow State Univ. Press, Moscow (1988); English transl.: Symplectic Geometry, Gordon and Breach, New York (1988).

    Google Scholar 

  8. M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York (1990).

    Google Scholar 

  9. V. F. Zhuravlev and D. M. Klimov, Applied Methods in Oscillation Theory [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  10. M. V. Karasev and V. P. Maslov, Russ.Math.Surveys, 39, 133-205 (1984); Nonlinear Poisson Brackets [in Russian], Nauka, Moscow (1991); English transl.: Nonlinear Poisson Brackets: Geometry and Quantization, Am. Math. Soc., Providence, R. I. (1993).

    Google Scholar 

  11. V. F. Lazutkin, KAMT heory and Semiclassical Approximations to Eigenfunctions (Ergebnisse der Mathem. und Ihrer Grenzg. 3. Folge. Bd. 24), Springer, Berlin (1993).

    Google Scholar 

  12. V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], Moscow State Univ. Press, Moscow (1965); French transl.: Theorie des perturbations et methodes asymptotiques, Dunod, Paris (1972); V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics [in Russian], Nauka, Moscow (1976); English transl., Kluwer, Dordrecht (1981).

    Google Scholar 

  13. V. P. Maslov, The Complex WKB Method for Nonlinear Equations [in Russian], Nauka, Moscow (1977); English transl.: The Complex WKB Method for Nonlinear Equations: I.Linear Theory, Birkhäuser, Basel (1994).

    Google Scholar 

  14. M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley, New York (1989).

    Google Scholar 

  15. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics [in Russian] (Sovrem. Probl. Mat. Fund. Naprav., Vol. 3), VINITI, Moscow (1985); English transl.: Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics (Encycl. Math. Sci., Vol. 3), Springer, Berlin (1987).

    Google Scholar 

  16. V. V. Kozlov, Symmetries, Topologies, and Resonances in Hamiltonian Mechanics [in Russian], Udmurt. State Univ. Press, Izhevsk (1995); English transl., Springer, Berlin (1995).

    Google Scholar 

  17. V. I. Arnold, Sov.Math.Dokl., 2, 501-503 (1961).

    Google Scholar 

  18. V. I. Arnold, Russ.Math.Surveys, 18, No. 5, 9-36 (1963).

    Google Scholar 

  19. E. N. Dinaburg and Ya. G. Sinai, Funct.Anal.Appl., 9, 279-289 (1975).

    Google Scholar 

  20. A. Jorba and C. Simó, SIAMJ.Math.Anal, 27, 1704-1737 (1996); A. Jorba and J. Villanueva, Nonlinearity, 10, 783-822 (1997); A. Jorba, R. de la Llave, and M. Zou, “Linstedt series for lower-dimensional tori,” in: Hamiltonian Systems with Three or More Degrees of Freedom (NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., Vol. 533, C. Simó, ed.), Kluwer, Dordrecht (1999), pp. 151-167.

    Google Scholar 

  21. S. B. Kuksin, Math.Notes, 45, 373-381 (1989).

    Google Scholar 

  22. N. N. Nekhoroshev, Trudy Moskov.Mat.Obshch., 26, 181-198 (1972).

    Google Scholar 

  23. H. Rüssmann, Regul.Chaotic Dyn., 6, No. 2, 119-204 (2001).

    Google Scholar 

  24. V. V. Sokolov and A. A. Tsiganov, Theor.Math.Phys., 131, 543-549 (2002).

    Google Scholar 

  25. V. I. Arnold and A. B. Givental', Symplectic Geometry [in Russian], Scientific Publishing Center “Regular and Chaotic Dynamics”, Izhevsk (2000).

    Google Scholar 

  26. J. E. Marsden and A. Weinstein, Rep.Math.Phys., 5, 121-130 (1974).

    Google Scholar 

  27. V. V. Belov, S. Yu. Dobrokhotov, and V. A. Maksimov, Dokl.Rossiiskoi Akad.Nauk, 381, 452-456 (2001).

    Google Scholar 

  28. V. V. Belov and S. Yu. Dobrokhotov, Sov.Math.Dokl., 37, 180-185 (1988); Theor.Math.Phys., 92, 843-868 (1992).

    Google Scholar 

  29. V. V. Belov, O. S. Dobrokhotov, and S. Yu. Dobrokhotov, Math.Notes, 69, 437-466 (2001).

    Google Scholar 

  30. V. P. Maslov and O. Yu. Shvedov, The Complex Germ Method in Quantum Field Theory [in Russian], URSS, Moscow (1998).

    Google Scholar 

  31. J. Avron and B. Simon, Phys.Rev.Lett., 46, 1166-1168 (1981).

    Google Scholar 

  32. V. V. Belov, S. Yu. Dobrokhotov, and V. M. Olivé, Phys.Dokl., 38, No. 7, 263-266 (1993).

    Google Scholar 

  33. V. V. Belov and V. A. Maksimov, Math.Notes, 64, 251-255 (1998); Russ.J.Math.Phys., 7, 363-370 (2000).

    Google Scholar 

  34. V. V. Belov and J. L. Volkova, Russ.J.Math.Phys., 1, 409-427 (1993); V. V. Belov, V. M. Olivé, and J. L. Volkova, J.Phys.A, 28, 5799-5810, 5811-5829 (1995).

    Google Scholar 

  35. S. Yu. Dobrokhotov, V. Martínez-Olivé, and A. I. Shafarevich, Russ.J.Math.Phys., 3, 133-138 (1995); S. Yu. Dobrokhotov and V. M. Olivé, Trans.Mosc.Math.Soc., 1997, 1-73 (1997); S. Yu. Dobrokhotov and A. I. Shafarevich, Russ.J.Math.Phys., 5, 267-272.

    Google Scholar 

  36. S. Yu. Dobrokhotov and A. I. Shafarevich, “Semiclassical quantization of invariant isotropic manifolds of Hamiltonian systems [in Russian],” in: Topological Methods in Hamiltonian Systems Theory (A. V. Bolsinov, A. T. Fomenko, and A. I. Shafarevich, eds.), Factorial, Moscow (1998), pp. 41-114.

    Google Scholar 

  37. M. Karasev, “To the Maslov theory of quasiclassical asymptotics: Examples of new global quantization formula application,” Preprint ITP-89-78E, Inst. Theor. Phys., Kiev (1989).

    Google Scholar 

  38. M. Karasev and Yu. Vorobjev, “Adapted connections, Hamilton dynamics, geometric phases, and quantization over isotropic submanifolds,” in: Coherent Transform, Quantization, and Poisson Geometry (Adv. Math. Sci., Transl. 2, Vol. 187, M. Karasev, ed.), Am. Math. Soc., Providence, R. I. (1998), pp. 203-326.

    Google Scholar 

  39. M. Karasev and Yu. Vorobjev, “Linear connections for Hamilton dynamics over isotropic submanifolds,” in: Seminar on Dynamical Systems (Progr. Nonlinear Diff. Equations Their Appl., Vol. 12, S. Kuksin, V. Lazutkin, and J. Poschel, eds.), Birkhäuser, Basel (1994), pp. 235-252.

    Google Scholar 

  40. M. Karasev and Yu. Vorobjev, Adv.Math., 135, 220-286 (1998).

    Google Scholar 

  41. A. D. Krakhnov, “Construction of asymptotic approximations to the eigenvalues of the Laplace operator corresponding to the nondegenerate invariant torus of the geodesic flow [in Russian],” in: Methods of Qualitative Theory of Differential Equations: No. 1, Gorkii State Univ. Press, Gorkii (1973), pp. 66-74.

    Google Scholar 

  42. M. A. Poteryakhin, “The spectral series of 3-D quantum anharmonic oscillator,” in: Proc.Days of Diffraction 2000, St. Petersburg Univ. Press, St. Petersburg (2000), pp. 127-133.

    Google Scholar 

  43. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys.Rep., 223, No. 2, 43-133 (1993).

    Google Scholar 

  44. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.: Operational Methods, Mir, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, V.V., Dobrokhotov, S.Y. & Maksimov, V.A. Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application. Theoretical and Mathematical Physics 135, 765–791 (2003). https://doi.org/10.1023/A:1024022718890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024022718890

Navigation