Advertisement

Journal of Atmospheric Chemistry

, Volume 45, Issue 1, pp 79–99 | Cite as

Regional Sources of Methyl Chloride, Chloroform and Dichloromethane Identified from AGAGE Observations at Cape Grim, Tasmania, 1998–2000

  • M. L. Cox
  • G. A. Sturrock
  • P. J. Fraser
  • S. T. Siems
  • P. B. Krummel
  • S. O'Doherty
Article

Abstract

There are large uncertainties in identifying and quantifying the natural and anthropogenic sources of chloromethanes – methyl chloride (CH3Cl), chloroform (CHCl3) and dichloromethane (CH2Cl2), which are responsible for about 15% of the total chlorine in the stratosphere. We report two years of in situ observations of these species from the AGAGE (Advanced Global Atmospheric Gas Experiment) program at Cape Grim, Tasmania (41° S, 145° E). The average background levels of CH3Cl, CHCl3 and CH2Cl2 during 1998–2000 were 551± 8, 6.3± 0.2 and 8.9± 0.2 ppt (dry air mole fractions expressed in parts per 1012) respectively, with a two-year average amplitude of the seasonal cycles in background air of 25, 1.1 and 1.5 ppt respectively. The CH3Cl and CHCl3 records at Cape Grim show clear episodes of elevated mixing ratios up to 1300 ppt and 55 ppt respectively, which are highly correlated, suggesting common source(s). Trajectory analyses show that the sources of CH3Cl and CHCl3 that are responsible for these elevated observations are located in coastal-terrestrial and/or coastal-seawater regions in Tasmania and the south-eastern Australian mainland. Elevated levels of CH2Cl2 (up to 70 ppt above background) are associated mainly with emissions from the Melbourne/Port Phillip region, a large urban/industrial complex (population 3.5 million) 300 km north of Cape Grim.

chloromethanes methyl chloride chloroform dichloromethane Cape Grim Baseline Air Pollution Station baseline data annual cycle trajectory analysis pollution events coastal source regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson, K., Ekdahl, A., Collén, J., and Pedersén, M., 1995: Formation and distribution of halogenated volatile organics in sea water, in A. Grimvall and de E.W. B. Leer (eds.), Naturally-Produced Organohalogens, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 317–326.Google Scholar
  2. Aucott, M., Graedel, T. E., Kleiman, G., McCulloch, A., Midgley, P. M., and Li, Y., 1999: Anthropogenic emissions of trichlorinated-methane (chloroform) and chlorodifluoromethane (HCFC-22), reactive chlorine emissions inventory, J. Geophys. Res. 104, 8405–8415.Google Scholar
  3. Baker, J. M., Sturges, W. T., Sugier, J., Sunnenberg, G., Lovett, A. A., Reeves, C. E., Nightingale, P. D., and Penkett, S. A., 2001: Emissions of CH3Br, organochlorines, and organoiodines from temperate macroalgae, Chemosphere – Global Change Science 3, 93–106.Google Scholar
  4. Bassford, M. R., Nickless, G., Simmonds, P. G., Lewis, A. C., Pilling, M. J., and Evans, M. J., 1999: The concurrent observation of methyl iodide and dimethyl sulphide in marine air; implications for sources of atmospheric methyl iodide, Atmos. Environ. 33, 2372–2383.Google Scholar
  5. Beardsmore, D. J. and Pearman, G. I., 1987: Atmospheric carbon dioxide measurements in the Australian region, data from surface observatories, Tellus 39B, 42–66.Google Scholar
  6. Butler, J. H., Battle, M., Bender, M. L., Montzka, S. A., Clarke, A. D., Saltzman, E. S., Sucher, C. M., Severinghaus, J. P., and Elkins, J. W., 1999: A record of atmospheric halocarbons during the twentieth century from polar firn air, Nature 399, 749–755.Google Scholar
  7. Butler, J. H., 2000: Better budgets for methyl halides? Nature 403, 260–261.Google Scholar
  8. Cox, M. L., 2001: A regional study of the natural and anthropogenic sources and sinks of the major halomethanes, PhD Dissertation, 191 pp.Google Scholar
  9. Conway, T. J., Steele, L. P., and Novelli, P. C., 1993: Correlations among atmospheric CO2, CH4 and CO in the Arctic, March 1989, Atmos. Environ. 27A(17/18), 2881–2894.Google Scholar
  10. Dimmer, C. H., Simmonds, P. G., Nickless, G., and Bassford, M. R., 2001: Biogenic fluxes of halomethanes from Irish peatland ecosystems, Atmos. Environ. 35, 321–330.Google Scholar
  11. Draxler, R. R., 1992: Hybrid single-particle lagrangian integrated trajectories (Hy-Split), Version 3.0 – User's guide and model description, NOAA Technical Memorandum, ERL ARL-195, Air Resources Laboratory, Silver Spring, Maryland, U.S.A., 26 pp.Google Scholar
  12. Elkins, J. W., Montzka, S. A., Thompson, T. M., Swanson, T. H., Clarke, A. D., Moore, F. L., Hurst, D. F., Romashkin, P. A., Yvon-Lewis, S. A., Lobert, J. M., Dicoreleto, M., Dutton, G. S., Lock, L. T., King, D. B., Dunn, R. E., Ray, E. A., Pender, M., Wamsley, P. R., and Volk, C. M., 1998: Nitrous Oxide and Halocompounds, in J. H. Butler, D. J. Hofmann, J. T. Peterson, and R. M. Rosson (eds.), Climate Monitoring and Diagnostics Laboratory Summary Report No. 24 1997, Department of Commerce, Boulder, Colorado, U.S., Chap. 5, pp. 91–121.Google Scholar
  13. Environment Australia, 2001: A Directory of Important Wetlands in Australia, Third Edition, Environment Australia, Canberra, ACT, available online at http://www.environment.gov.au/wetlands/summary.html.Google Scholar
  14. Environment Protection Authority (EPA), 1998: Air Emissions Inventory, Port Phillip Region, Publication No. 632, Melbourne, Victoria, Australia, 48 pp.Google Scholar
  15. Fenneteaux, I., Colin, P., Etienne, A., Boudries, H., Dutot, A. L., Perros, P. E., and Toupance, G., 1999: Influence of continental sources on oceanic air composition at the eastern edge of the North Atlantic Ocean, TOR 1992–1995, J. Geophys. Res. 32, 233–280.Google Scholar
  16. Frank, W. and Frank, H., 1990: Concentrations of airborne C1-and C2-halocarbons in forest areas in West Germany, results of three campaigns in 1986, 1987 and 1988, Atmos. Environ. 24A, 1735–1739.Google Scholar
  17. Fraser, P. J., Hyson, P., Rasmussen, R. A., Crawford, A. J., and Khalil, M. A., 1986: Methane, carbon monoxide and methylchloroform in the Southern Hemisphere, J. Atmos. Chem. 4, 3–42.Google Scholar
  18. Hansen, A. D. A., Conway, T. J., Steele, L. P., Bodhaine, B. A., Thoning, K. W., Tans, P., and Novakov, T., 1989: Correlations among combustion effluent species at Barrow, Alaska: Aerosol black carbon, carbon dioxide and methane, J. Atmos. Chem. 9, 283–299.Google Scholar
  19. Harris, J. M., Dlugokencky, E. J., Oltmans, S. J., Tans, P. P., Conway, T. J., Novelli, P. C., Thoning, K. W., and Kahl, J. D. W., 2000: An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986–1997, J. Geophys. Res., 105(D13), 17,267–17,278.Google Scholar
  20. Haselmann, K. F., Ketola, R. A., Laturnus, F., Lauritsen, F. R., and Grøn, C., 2000a: Occurrence and formation of chloroform at Danish forest sites, Atmos. Environ. 34, 187–193.Google Scholar
  21. Haselmann, K. F., Laturnus, F., Svensmark, B., and Grøen, C., 2000b: Formation of chloroform in spruce forest soil – results from laboratory incubation studies, Chemosphere 41, 1769–1774.Google Scholar
  22. Hoekstra, E. J., Verhagen, F. J. M., Field, J. A., De Leer, E. W. B., and Brinkman, U. A. Th., 1998a: Natural Production of chloroform by fungi, Phytochem. 49, 99–97.Google Scholar
  23. Hoekstra, E. J., De Leer, E.W. B., and Brinkman, U. A. Th., 1998b: Natural formation of chloroform and brominated trihalomethanes in soil, Environ. Sci. Technol. 32, 3724–3729.Google Scholar
  24. Isidorov, V. A., Zenkevich, I. G., and Ioffe, B. V. 1985: Volatile organic compounds in the atmosphere of forests, Atmos. Environ. 19(1), 1–8.Google Scholar
  25. Katzfey, J., 1997: Passive Tracer Studies of a cyclonic system, in T. Beer and D. Jasper (eds.), in IAMAP/IAPSO Joint Assemblies. Abstracts, 1997, Melbourne Australia, Local Organising Committee, 1997 Joint Assemblies of IAMAS and IAPSO, abstract IM2uuuu, pp. IM2–21.Google Scholar
  26. Keene, W. C., Khalil, M. A. K., Erickson, D. J., McCulloch, A., Graedel, T. E., Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G., Midgley, P., Moore, R. M., Seuzaret, C., Sturges, W. T., Benkovitz, C.M., Koropalov, V., Barrie, L. A., and Li, Y. F., 1999: Composite global emissions of reactive chlorine from anthropogenic and natural sources, reactive chlorine emissions inventory, J. Geophys. Res. 104, 8429–8440.Google Scholar
  27. Keppler, F., Eiden, R., Niedan, V., Pracht, J., and Schöler, H. F., 2000: Halocarbons produced by natural oxidation processes during degradation of organic matter, Nature 403, 298–301.Google Scholar
  28. Khalil, M. A. K., 1999: Reactive chlorine compounds in the atmosphere, in P. Fabian and O. N. Singh (eds.), Reactive Halogen Compounds in the Atmosphere, Springer-Verlag, Berlin, Heidelburg New York, pp. 45–79.Google Scholar
  29. Khalil, M. A. K. and Rasmussen, R. A., 1999a: Atmospheric methyl chloride, Atmos. Environ. 33, 1305–1321.Google Scholar
  30. Khalil, M. A. K. and Rasmussen, R. A., 1999b: Atmospheric chloroform, Atmos. Environ. 33, 1151–1158.Google Scholar
  31. Kleiman, G. and Prinn, R. G., 2000: Measurement and deduction of emissions of trichloroethene, tetrachloroethene, and trichlorinated-methane (chloroform) in northeastern United States and southeastern Canada, J. Geophys. Res. 105, 28,875–28,893.Google Scholar
  32. Koppmann, R., Johnen, F. J., Plass-dulmer, C., and Rudolph, J., 1993: Distribution of methyl chloride, dichloromethane, trichloroethene and tetrachloroethene over the north and south Atlantic, J. Geophys. Res. 98, 20,517–20,526.Google Scholar
  33. Kurylo, M. J., Rodriguez, J. M., Andreae, M. O., Atlas, E. L., Blake, D. R., Butler, J. H., Lal, S., Lary, D. J., Midgeley, P. M., Montzka, S. A., Novelli, P. C., Reeves, C. E., Simmonds, P. G., Steele, P. L., Sturges, W. T., Weiss, R. F., and Yokouchi, Y., 1999: Short-Lived Ozone-Related Compounds, Chap. 2 in Scientific Assessment of Ozone Depletion: 1998, WMO Global Ozone Research and Monitoring Project – Report No. 44, 2.1–2.56.Google Scholar
  34. Laturnus, F., Mehrtens, G., and Grøn, C., 1995: Haloperoxidase-like activity in spruce forest soil – a source of volatile halogenated organic compounds? Chemosphere 31, 3709–3719.Google Scholar
  35. Li, H.-J., Yokouchi, Y., and Akimoto, H., 1999: Measurement of methyl halides in the marine atmosphere, Atmos. Environ. 33, 1881–1887.Google Scholar
  36. Madronich, S., Velders, G. J. M., Daniel, J. S., Lal, M., McCulloch, A., and Slaper, H., 1999: Halocarbon Scenarios for the Future Ozone Layer and Related Consequences, Chap. 11 in Scientific Assessment of Ozone Depletion: 1998, WMO Global Ozone Research and Monitoring Project – Report No. 44, 11.1–11.38.Google Scholar
  37. Manley, S. L. and Dastoor, M. N., 1987: Methyl halide (CH3X) production from the giant kelp, macrocystis, and estimates of global CH3X production by kelp, Limnol. Oceanogr. 32, 709–715.Google Scholar
  38. McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G., Midgley, P. M., and Li, Y.-F., 1999: Global emissions of hydrogen chloride and chlorinated-methane from coal combustion, incineration and industrial activities, reactive chlorine emissions inventory, J. Geophys. Res. 124, 8391–8403.Google Scholar
  39. McGregor, J. L., 1997: Regional climate modelling, Meteorol. and Atmos. Phys. 63, 105–117.Google Scholar
  40. Montzka, S. A., Butler, J. H., Elkins, J. W., Thompson, T. M., Clarke, A. D., and Lock, L. T. 1999: Present and future trends in the atmospheric burden of ozone-depleting halogens, Nature 398, 690–694.Google Scholar
  41. Moore, R. M., Groszko, W., and Niven, S. J., 1996: Ocean-atmosphere exchange of methyl chloride, results from NW Atlantic and Pacific Ocean Studies, J. Geophys. Res. 85, 28,529–28,538.Google Scholar
  42. O'Doherty, S., Cunnold, D., Sturrock, G. A., Ryall, D., Derwent, R. G., Wang, R. H. J., Simmonds, P., Fraser, P. J., Weiss, R. F., Salameh, P., Miller, B. R., and Prinn, R. G., 2001: In situ chloroform measurements at AGAGE atmospheric research stations from 1994–1998, J. Geophys. Res. 106, 20,429–20,444.Google Scholar
  43. Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch, A., 2000: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res. 105, 17,751–17,792.Google Scholar
  44. Puri, K., Dietachmayer, G. S., Mills, G. A., Davidson, N. E., Bowen, R. A., and Logan, L.W., 1998: The new BMRC Limited Area Prediction System, LAPS, Aust. Met. Mag. 47, 203–223.Google Scholar
  45. Reid, J. B., Hill, R. S., Brown, M. J., and Hovenden, M. J., 1999: Vegetation of Tasmania (Flora of Australia Supplementary Series No. 8), Canberra, ACT: Australian Biological Resources Study, 456 pp.Google Scholar
  46. Rhew, R. C., Miller, B. R., and Weiss, R. F., 2000: Natural methyl bromide and methyl chloride emissions from coastal salt marshes, Nature 403, 292–295.Google Scholar
  47. Rolph, G. D. and Draxler, R. R., 1990: Sensitivity of three-dimensional trajectories to the spatial and temporal densities of the wind field, J. App. Met. 29, 1043–1467.Google Scholar
  48. Rowland, S., Harris, N. R. P., and Blake, D. R., 1990: Methane in cities, Nature, 347, 432–433.Google Scholar
  49. Rudolph, J., Khedim, A., Koppman, R., and Bonsang, B., 1995: Field study of the emissions of methyl chloride and other halocarbons from biomass burning in western Africa, J. Atmos. Chem. 22, 67–80.Google Scholar
  50. Ryan, S. C., Dick, A. L., and Steele, L. P., 2001: Ecosystem CO2 exchange near Cape Grim, Tasmania, in N. W. Tindale, R. J. Francey, and N. Derek (eds.), Baseline 97–98, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, Australia, 7–20.Google Scholar
  51. Saini, H. S., Attieh, J. M., and Hanson, A. D., 1995: Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction, Plant Cell and Environ. 18, 1027–1033.Google Scholar
  52. Schauffler, S. M., Heidt, L. E., Pollock, W. H., Gilpin, T. M., Vedder, J. F., Solomon, S., Lueb, R. A., and Atlas, E. L., 1993: Measurements of halogenated organic compounds near the tropical tropopause, Geophys. Res. Letts. 20, 2567–2570.Google Scholar
  53. Simmonds, P. G., O'Doherty, S., Nickless, G., Sturrock, G. A., Swaby, R., Knight, P., Ricketts, J., Woffendin, G., and Smith, R., 1995: Automated gas chromatograph/mass spectrometer for routine atmospheric field measurements of the CFC replacement compounds, the hydrofluorocarbons and hydrochlorofluorocarbons, Anal. Chem. 67, 717–723.Google Scholar
  54. Sturrock, G. A., Doherty, S., and Fraser, P. J., 1998: In situ measurements of CFC replacement chemicals at Cape Grim, Tasmania, The AGAGE GC-MS program, Proceedings of the 14th International Clean Air and Environment Conference, 1998, Melbourne Victoria, Clean Air Society of Australia and New Zealand, pp. 511–516.Google Scholar
  55. Sturrock, G. A, Porter, L. W., and Fraser, P. J., 2001: In situ measurement of CFC replacement chemicals and halocarbons at Cape Grim: AGAGE GC-MS program, in N. W. Tindale, R. J. Francey, and N. Derek (eds.), Baseline 97–98, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, Australia, 43–49.Google Scholar
  56. Tait, V. K., Moore, R. M., and Tokarczyk, R., 1994: Measurements of methyl chloride in the northwest Atlantic, J. Geophys. Res. 99, 7821–7833.Google Scholar
  57. Thoning, K. W., Tans., P. P., and Komhyr, W. D., 1989: Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985, J. Geophys. Res. 94, 8549–8565.Google Scholar
  58. Urhahn, T. and Ballschmiter, K., 1998: Chemistry of the biosynthesis of halogenated methanes, C1-Organohalogens as pre-industrial chemical stressors in the environment, Chemosphere 37, 1017–1032.Google Scholar
  59. Watling, R. and Harper, D. B., 1998: Chlorinated-methane production by wood-rotting fungi and an estimate of the global flux to the atmosphere, Mycol. Res. 102, 769–787.Google Scholar
  60. Wilson, S. R., Dick, A. L., Fraser, P. J., and Whittlestone, S., 1997: Nitrous oxide flux estimates for south-eastern Australia, J. Atmos. Chem. 26, 169–188.Google Scholar
  61. Wuosmaa, A. M. and Hager, L. P., 1990: Methyl chloride transferase, a carbocation route for biosynthesis of halometabolites, Science 249, 160–162.Google Scholar
  62. Yokouchi, Y., Noijiri, Y., Barrie, L. A., Toom-Sauntry, D., Machida, T., Inuzuka, Y., Akimoto, H., Li, H.-J., Fuginuma, Y., and Aoki, S., 2000: A strong source of methyl chloride to the atmosphere from tropical coastal land, Nature 403, 295–298.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. L. Cox
    • 1
    • 2
  • G. A. Sturrock
    • 3
    • 4
  • P. J. Fraser
    • 3
  • S. T. Siems
    • 1
  • P. B. Krummel
    • 3
  • S. O'Doherty
    • 5
  1. 1.Department of Mathematics and StatisticsMonash UniversityClaytonAustralia
  2. 2.York UniversityNorth YorkCanada
  3. 3.CSIROAtmospheric ResearchAspendaleAustralia
  4. 4.University of East AngliaNorwichU.K
  5. 5.School of ChemistryUniversity of BristolBristolU.K

Personalised recommendations