Skip to main content
Log in

On the Convergence of a Non-incremental Homogenization Method for Nonlinear Elastic Composite Materials

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In order to simulate the nonlinear behaviour of elastomer composite materials, we use a homogenization technique which induces nonlinear problems. This paper presents a non-incremental solving method which allows the reduction of computational costs. In this paper the equivalence between the proposed solving method and a Newton-type method is proved, which allows us to prove the convergence under realistic assumptions. Numerical results on a composite illustrate the performances of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alexander, A constitutive relation for rubber-like materials, Internat. J. Engrg. Sci. 6 (1968) 549-563.

    Google Scholar 

  2. E.M. Arruda and M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41 (1993) 389–412.

    Google Scholar 

  3. J. Ball, Convexity conditions and existence theorems in non linear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337–403.

    Google Scholar 

  4. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Applied Mathematics and Its Applications, Vol. 5 (North-Holland, Amsterdam, 1978).

    Google Scholar 

  5. M. Bernadou, P.G. Ciarlet and J. Hu, Sur la convergence des méthodes incrémentales en élasticité non-linéaire tridimensionnelle, C. R. Acad. Sci. Paris Sér. I 295 (1982) 639–642.

    Google Scholar 

  6. M. Brieu, Homogénéisation et endommagement de composites élastomères par techniques de calcul parallèle, Thèse de Doctorat, Ecole Normale Supérieure de Cachan (1999).

  7. M. Brieu and F. Devries, Homogénéisation de composites élastomères. Méthode et algorithme, C. R. Acad. Sci. Paris Sér. II 326 (1998) 379–384.

    Google Scholar 

  8. M. Brieu, F. Devries and J. Erhel, Algorithme parallèle non incrémental pour la simulation de l'évolution d'endommagements en milieux hyper élastiques, Calculateurs Parallèles Réseaux Systèmes Réparties 13(1) (2001) 83–106.

    Google Scholar 

  9. P.G. Ciarlet, The Finite Element Method for Elliptic Problem (North-Holland, Amsterdam, 1978).

    Google Scholar 

  10. P.G. Ciarlet and G. Geymonat, Sur les lois de comportement en élasticité non linéaire compressible, C. R. Acad. Sci. Paris Sér. II 295 (1982) 423–426.

    Google Scholar 

  11. J.Y. Cognard, Une nouvelle approche des problèmes de plasticité et de viscoplasticité, La M.A.G.I.T., Thèse de Doctorat, Université Paris VI (1989).

  12. J.E. Denis and R.B. Schnabel, Numerical Methods for Unconstrained and Nonlinear Equations, Computational Mathematics (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  13. F. Devries, Calcul du comportement homogénéisé de composites hyperélastiques, Rev. Composites Matériaux Avancés 6(2) (1996).

  14. F. Devries, Homogenization of elastomer matrix composites. Method and validation, Composites Engrg. Part B 29(6) (1998) 753–762.

    Google Scholar 

  15. G. Dhatt and G. Touzot, Une Présentation de la Méthode des Éléments Finis (Les presses de l'Université de Laval, Québec, 1981).

    Google Scholar 

  16. H. Dumontet, Homogénéisation des matériaux stratifiés de type élastique linéaire, non linéaire, viscoplastique, Thèse de 3ème cycle, Université Paris VI (1983).

  17. G. Duvaut, Mécaniques des Milieux Continus (Masson, Paris, 1990).

    Google Scholar 

  18. G. Geymonat, S. Müller and N. Triantafyllidis, Homogenization of nonlinearly elastic materials, microscopic bifurcations and macroscopic loss of rank-one convexity, Arch. Rational Mech. Anal. 122 (1993) 231–290.

    Google Scholar 

  19. P. Ladeveze, Mécanique non Linéaire des Structures, Etudes en Mécaniques des Matériaux et des Structures (Hermés, 1996).

  20. J. Lambert-Diani and C. Rey, Elaboration de nouvelles lois de comportement pour les élastomères, C. R. Acad. Sci. Paris (1998).

  21. F. Léné, Contribution à l'étude des matériaux composites et de leurs endommagements, Thèse de Doctorat, Université Pierre et Marie Curie (1991).

  22. S. Müller, Homogenization of nonconvex integral functionnals and cellular elastic materials, Arch. Rational Mech. Anal. 99 (1987) 189–212.

    Google Scholar 

  23. R.S. Rivlin, Large elastic deformation of isotropic materials I. fundamental concepts, Philos. Trans. Roy. Soc. London Ser. A 240 (1948) 459–490.

    Google Scholar 

  24. D.R.S. Talbot and J.R. Willis, Bounds and self-consistent estimates for the overall properties of nonlinear composites, IMA J. Appl. Math. 39 (1987) 215–240.

    Google Scholar 

  25. N. Triantafyllidis and B.N. Maker, On the comparison between microscopic instabillity mechanisms in a class of fiber reinforced composites, ASME J. Appl. Mech. 52 (1985) 794–800.

    Google Scholar 

  26. J.R. Willis, Variational and related methods for the overall properties of composites, Adv. in Appl. Mech. 21 (1981) 1–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brieu, M., Erhel, J. On the Convergence of a Non-incremental Homogenization Method for Nonlinear Elastic Composite Materials. Numerical Algorithms 32, 141–161 (2003). https://doi.org/10.1023/A:1024019501434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024019501434

Navigation